
CNN-based Discriminative Training for Domain
Compensation in Acoustic Event Detection with

Frame-wise Classifier
Tiantian Tang∗, Xinyuan Zhou∗, Yanhua Long∗, Yijie Li† and Jiaen Liang†

∗ Shanghai Normal University, Shanghai, China
† Unisound AI Technology Co., Ltd., Beijing, China

E-mail: 1000479042@smail.shnu.edu.cn, yanhua@shnu.edu.cn, {liyijie,liangjiaen}@unisound.com

Abstract—Domain mismatch is a noteworthy issue in acoustic
event detection tasks, as the target domain data is difficult to
access in most real applications. In this study, we propose a
novel CNN-based discriminative training framework as a domain
compensation method to handle this issue. It uses a parallel CNN-
based discriminator to learn a pair of high-level intermediate
acoustic representations. Together with a binary discriminative
loss, the discriminators are forced to maximally exploit the
discrimination of heterogeneous acoustic information in each
audio clip with target events, which results in a robust paired
representations that can well discriminate the target events and
background/domain variations separately. Moreover, to better
learn the transient characteristics of target events, a frame-
wise classifier is designed to perform the final classification. In
addition, a two-stage training with the CNN-based discriminator
initialization is further proposed to enhance the system training.
All experiments are performed on the DCASE 2018 Task3
datasets. Results show that our proposal significantly outperforms
the official baseline on cross-domain conditions in AUC by
relative 1.8-12.1% without any performance degradation on in-
domain evaluation conditions.

I. INTRODUCTION

Acoustic event detection (AED) refers to the task of de-
tecting whether interested target events occur in audios such
as running water, cough, meow, etc. With the launch of the
Detection and Classification of Acoustic Scenes and Events
(DCASE) challenges from 2013[1], a set of AED-related
tasks are provided for research and progress comparison of
state-of-the-art techniques. The bird audio detection (BAD)
[2] task is the DCASE 2018 Task3 that aims to detect the
presence/absence of bird sound in audio clips under variety
bird species, recording and background conditions. To solve
this task well, the approaches are required to inherently gener-
alize across conditions or can be self-adapted to new datasets,
because there is big domain mismatch between training and
evaluation sets. In this study, we also focus on the domain
mismatch issue for BAD task, because the source and target
domain mismatch is a common problem in most AED tasks[3],
[4], and it typically results in a severe performance degradation
in practical applications [5].

In the literature, only few previous works have been pro-
posed to improve the domain robustness of BAD systems.
Such as in [6], authors applied a per-channel energy normaliza-
tion to alleviate the outdoor acoustic environment distortions.

In [7], authors used the wasserstein distance guided representa-
tion learning [8] to incorporate the domain knowledge during
model training. And works in [9] applied the CORrelation
ALignment [10] to minimize the domain shift by aligning the
second-order statistics of source and target distributions. There
are also some domain compensation or adaptation methods are
proposed for other acoustic processing tasks [11], [12], [13],
[14], [15], [16]. For example, in acoustic scene classification
task, a spectrum correction [17] was proposed to corrected
the mismatched front-end by adjusting the varying frequency
response of different recording devices. [18] proposed a neural
label embedding together with a relational teacher-student
learning to perform the device adaptation. And in [19], the
unsupervised adversarial learning was used to leverage an extra
domain discriminator for device adaptation and it was further
generalized for AED tasks in [3].

Unlike previous domain adaptation methods, in this study,
we deal with the domain mismatch in BAD tasks by proposing
a novel discriminative training framework with two CNN-
based discriminators, where each input audio clip is trans-
formed into a pair of discriminative high-level acoustic repre-
sentations before feeding them to the back-end binary clas-
sifier. It is motivated by the intuition that extracting high-
level representation using standard network as CNN or LSTM
optimized only by the final task-dependent loss might not
be the best choice, as it may tend to be trapped in local
optima and fail to extract the fine-grained heterogeneous
acoustic information between targets and interferences we
need. Therefore, we wonder if it is possible to learn two
discriminative representations from each audio clip instead of
one to enhance the domain robustness of AED systems. In
the BAD task, we design a two-stage training strategy with a
binary discriminative loss to force the CNN-based discrimi-
nators to learn the acoustic discrimination between bird calls
and background interferences separately. The resulted paired
representations are then feed into a specially designed frame-
wise classifier to further capture the transient characteristics.
All experiments are performed on the DCASE 2018 Task3
datasets. Compared with the official baseline system [20], re-
sults show that our proposed framework can achieve significant
performance improvements on cross-domain test conditions
without degrading performance of in-domain test conditions.
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Fig. 1. Framework of the proposed CNN-based discriminative training with frame-wise classifier.

II. PROPOSED METHOD

A. Architecture

Fig. 1 gives an overview of our proposed method. As in
block (c), the BAD system consists of two parts: a parallel
CNN-based discriminator and followed by a frame-wise binary
classifier. The discriminators are with the same structure as
shown in block (b). Given a labeled dataset D = {(xi, yi)}Ni=1

with N samples, where xi is the input audio clip and yi ∈
{0, 1} is a label to indicate the absence/presence of any bird
calls within that clip. Each input x is first transformed to a
log-mel spectrogram X ∈ R1×F×T , where F and T are the
number of mel-frequency bins and frames respectively. By
taking X as input feature, the parallel discriminator dcnn(·, θ)
with C-channel output layers are employed to obtain a pair
of intermediate discriminative representations A ∈ RC×F×T

and B ∈ RC×F×T ,

A = dcnn(X, θu) (1)

B = dcnn(X, θd) (2)

where θu and θd denote the CNN parameters of the upper
and lower discriminators in Fig. 1 (c) respectively. Then we
concatenate A and B into a tensor M∈ RC×F×2T as

M = [A,B] (3)

Next, we reshape M into a (C × F ) × 2T matrix M̃
as input of the frame-wise classifier G(·) to perform the
binary classification. Details of the parallel discriminator, the
frame-wise binary classifier and system training strategy are
presented in the following subsections.

B. CNN-based Discriminator

Motivated by the fine-grained structure extraction [21] and
domain-invariant representation learning [22] for image clas-
sification, here we investigate to use two same structure CNN
networks as a parallel discriminator that shown in Fig.1 (c) to
extract a pair of intermediate discriminative representations to
enhance the bird calls detection system. We aim to mine the
intermediate feature discrimination of heterogeneous acoustic
information that embedded in each input audio clip, such as the
target events (bird calls) and variety background interferences
in a given clip of BAD task.

To force the designed parallel discriminator to well learn the
heterogeneous acoustic characteristic separately, we introduce
a novel binary discriminative loss as a training criteria to
trained the parallel discriminator simultaneously as below:

Ldis(s, y) = −[y log(1−H(s)) + λ(1− y) log(H(s))] (4)

where y ∈ {0, 1} denotes the ground-truth label of input clip,
λ ∈ [0, 1] is a tuning parameter to balance the loss contribution
of positive and negative training data. H(·) is the rectified
linear unit (ReLU) to ensure that the s is non-negative. s is a
cosine similarity measure that defined as :

s = sim(T (A), T (B)) = T (A) · T (B)
‖T (A)‖ ‖T (B)‖

(5)

where T (·) is the flatten operation that transforms a tensor into
a vector, as show in Fig. 1 (c), the T (A), T (B) transforms the
A,B into vector vu, vd respectively.

Based on (4), we minimize the Ldis(s, y) to achieve our
goal. It means that when the input clip is a positive sample
(y = 1) with heterogeneous acoustic information, i.e., the clip
is a mixture signal that contains both bird calls and background
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noises, then only the 1st part y log(1 − H(s)) contributes to
Ldis(s, y) and maximum H(s) = 0 ( A and B are totally
different, one learns background characteristics, while the
other emphasizes the bird calls). When the input is a negative
sample (y = 0, only background sounds), only the 2nd part
of (4) contributes to the loss, then the discriminators do not
differentiate their outputs, because minimizing Ldis(s, y) leads
to a maximum value of H(s) = 1, it results similar paired
A and B. That’s to say, Ldis(s, y) only discriminates the
heterogeneous information in positive samples to highlight the
acoustic characteristics of target events. These target represen-
tations should be more robust to domain variation, they can be
taken as domain-invariant intermediate features because they
capture the acoustic properties of bird calls more explicitly.

In most real applications as our BAD task, the positive
samples are always with background sounds. Therefore, we
think that if the BAD system is trained on a source domain, the
robust target representations learned from the parallel CNN-
based discriminator can leverage a better model generalization
to the target domain bird call detection. That’s to say, the
discriminators play a domain compensation role in the whole
BAD system.

C. Frame-wise (F-W) Binary Classifier

Different from other bioacoustics signals, the bird calls
are normally short, their spectrograms have strong transient
characteristics. Instead of using the conventional classifier of
official baseline [23] that accepts the whole flattened CNN
feature maps as one input, here we propose to use a frame-wise
classifier to learn the transient bird chirping characteristics. As
shown in the last block of Fig.1, each column M̃j ∈ RC×F ,
j = 1, 2, . . . , 2T , is taken as j-th frame, then each M̃j is
learned independently by a two-layers feed-forward neural
network (FFN) followed with a sigmoid activation to achieve
a prediction score pj . All M̃j share the same FFN parameters.
Finally, all the 2T prediction scores are further attention-
weighted by the attention pooling [24], [25] to automatically
control their contribution for decision making. The final score
p is computed as:

p = (
∑
j

pjwj)/
∑
j

wj (6)

where wj is the learnable weight for each pj . Details of the
attention pooling can be found in [26].

D. Two-stage Training Strategy

In intuition, the proposed BAD system in Fig.1(c) should
be trained in one-stage using a combination loss that defined
as:

Ltotal = Ldis(sim(vu, vd), y) + LBCE(ŷ, y) (7)

where ŷ is the final prediction score p, Ldis(·) is the binary
discriminative loss defined in (4), and LBCE(·) is the tradition
binary cross entropy (BCE) loss as in [27], [28]. vu, vd are
the flattened representations used in (5).

However, from our extensive tryout experiments, we find
that it’s better to use a two-stage training strategy with the

parallel CNN-based discriminator initialization. In stage 1,
as shown in Fig.1(a), we only train the parallel discriminator
using a binary discriminative loss defined as,

Lpre = Ldis(sim(qu, qd), y) (8)

where qu = GAP(A′), qd = GAP(B′) , the A′,B′ and the
size of qu, qd are illustrated in Fig.1(a). The GAP denotes
using the global average pooling [29] to map each channel
representation into a average one. It is different from the flatten
that used in one-stage training loss.

Based on the well pre-trained discriminators, in stage 2,
the whole system is then trained using the above combination
loss Ltotal, but with the discriminators are initialized by
the pre-trained CNN parameters in stage 1. We speculate
that an effective initialization may avoid local optima and
provide a good guidance to enhance the whole model training,
because the pre-trained discriminators can provide a stable and
discriminative perception to the frame-wise classifier.

III. EXPERIMENTAL SETUP

A. Dataset

The DCASE 2018 Task 3 (bird audio detection) provides 3
separate labeled development and 3 evaluation datasets, each
recorded under different conditions. As the ground-truth of
evaluation set is not released publicly. Only the development
sets are used in our work. The datasets have different balances
of positive/negative cases, different bird species and a wide-
domain coverage of background sounds and recording equip-
ments. Each audio clip is 10s-length and sampled at 44.1kHz.

Specifically, three development sets are the “freefield1010”
(ff1010bird), the “warblrb10k” and the “BirdVox-DCASE-
20k” (BirdVox-20k). The ff1010bird contains 7,690 excerpts
from field recordings around the world with a diverse location
and environments. The warblrb10k contains 8,000 smartphone
audio recordings from around the UK, the audio covers a
wide distribution of UK locations and environments, and it
includes weather/traffic noise, human speech and even human
bird imitations. The BirdVox-20k consists of 20,000 audio
clips that collected from remote monitoring units placed near
Ithaca, NY, USA during the autumn of 2015. Compared
with ff1010bird and BirdVox-20k, the warblrb10k contains
much more diverse background acoustics. Instead of using the
experimental procedure recommended by DCASE challenge to
achieve one general model, our goal is to examine the model
generalization ability for cross-domain evaluation tasks, so we
construct our own BAD tasks using the provided development
sets, for each of the above mentioned dataset, we select
60%, 20%, 20% audio clips for training, validation and test
respectively.

B. Features and Models

Each clip is down-sampled to 22.05 kHz and then divided
into 46 ms frames using hanning window with a hop size of
14 ms. 80-dimensional log-mel filter banks extracted across a
frequency range from 50 to 11 kHz are used as input features
for both the baseline and our method. The official “Area Under
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the Curve (AUC) of Receiver Operating Characteristic curve
(ROC)” [30] is used to evaluate the system performances.

The official baseline of DCASE 2018 BAD challenge [23]
is taken as our baseline. Its also a CNN-based encoder-
classifier structure. The CNN-based encoder is the same as
our discriminator as shown in block (b) of Fig.1. This encoder
is then followed by three dense (fully-connected) layers with
256, 32 and 1 unit(s) as a binary classifier. Each convolution
and dense layer use the leaky rectifier nonlinearity as their
activation function except for the sigmoid output layer.

Different from baseline, our model Fig.1 (c) uses two same
structure CNN-based encoders as a parallel discriminator,
but the followed frame-wise classifier only has two dense
layers with 32 and 1 unit(s). Besides using the frame-wise
classifier, as the baseline model, we also investigate to use the
conventional dense layers as the classifier (F-C) to learn the
directly flattened discriminator outputs M̃. As the flattened
vector dimension is too large (2816) than that in the baseline,
a four dense layers (512, 256, 32 and 1 unit(s)) instead of
three is used in the F-C to achieve a better results. The Adam
Optimizer [31] with a learning rate of 10−4 is used for both
the baseline and one-stage training. The two-stage training
uses 10−3 as initial learning rate, and then gradually decaying
to 10−5 in stage 1, then fixed to 10−4 in stage 2. 200
epochs are used in each stage.

IV. RESULTS

A. Results with one-stage training

Table I shows the performance comparison using one-stage
training. Two training-test tasks are constructed to evaluate the
effectiveness of the proposed methods. One is using “BirdVox-
20k” as the training set while the other is using “warblrb10k”
to train the model. Both of them are tested on the same three
subset of “BirdVox-20k, warblrb10k and ff1010bird”, there is
no clip overlap between training and test data.

From the baseline results of Table I, it’s clear that there are
big performance gaps between in-domain and cross-domain
tasks. Results on the in-domain test sets are much better
than those on cross-domain test sets. By comparing the F-
C and baseline results, we see significant AUC improvements
on the cross-domain test tasks, such as when we train the
model on “BirdVox-20k”, there are relative 11.8% and 5.7%
improvements on the “warblrb10k” and “ff1010bird” respec-
tively. In the 2nd block of Table I, we only achieve limited

TABLE I
RESULTS (AUC%) OF THE PROPOSED MODEL WITH F-C OR FRAME-WISE
(F-W) CLASSIFIER USING ONE-STAGE TRAINING STRATEGY. λ = 0.1 AND

1.0 IN (4) ACHIEVE THE BEST RESULTS FOR BOTH F-C AND F-W THAT
SHOWN IN THE 1ST AND 2ND BLOCKS RESPECTIVELY.

Train set Test set Baseline F-C F-W

BirdVox-20k
BirdVox-20k 94.62 94.57 93.63
warblrb10k 62.57 69.98 68.96
ff1010bird 75.11 79.42 79.61

warblrb10k
warblrb10k 94.29 94.39 94.66
BirdVox-20k 64.33 65.74 68.37
ff1010bird 85.22 82.98 86.47

gains (relative 2.2% on “BirdVox-20k”) or even a little bit
worse (relative 2.6% on “warblrb10k”) results when the model
is trained on a very wide-domain acoustic coverage dataset
“warblrb10k”. These improvements indicate that the proposed
CNN-based discriminator is very effective to enhance the
cross-domain performances when the model is trained on
“BirdVox-20k” that with no richness background acoustics.
Because: 1) both the baseline and F-C system are with the
same type of classifiers; 2) as shown in section III-A, the
“warblrb10k” is very diverse that contains a rich acoustic
environment while “BirdVox-20k” is recorded from a fixed
place with remote monitoring units.

Interestingly, by comparing the results in last two columns
of Table I, we see that under one-stage training strategy, almost
no improvements can be found when the model is trained on
“BirdVox-20k” , however, the proposed frame-wise classifier
achieves around absolute 2.6-3.5% AUC improvements over
the F-C on the cross-domain test sets when the model is
trained on “warblrb10k”. In addition, it’s clear to see that
there is almost no performance change on the in-domain test
set results, either for the “BirdVox-20k” or “warblrb10k” in-
domain tasks, it indicates that both of the proposed CNN-
based discriminative training and the frame-wise classifier
are effective to improve the cross-domain BAD performances
without worsening any in-domain performances.

B. Results with two-stage training

Table II shows the results of the proposed method with
two-stage training using different CNN-based discriminator
initialization. Comparing the results of TS-GAP with TS-
fla, we see that pre-training the discriminators using Lpre

with GAP achieves much better results than using flatten
operation. Performances of systems using Lpre with flatten
as initialization are even worse than the ones from one-
stage training strategy. This may due to the fact that global
average pooling as a structural regularizer sums out the spatial
information, which is less prone to overfitting than traditional
flatten operation [29]. Furthermore, when comparing the TS-
GAP with F-W, it’s clear that the performances from two-
stage training is slightly better than the ones from one-stage
training on all in-domain and cross-domain tasks. However,
the gains shown in the 1st block of Table II are much larger
than the ones shown in the 2nd block. This phenomenon

TABLE II
COMPARISON (IN AUC%) OF TRAINING STRATEGY WITH AND WITHOUT

DISCRIMINATOR INITIALIZATION. F-W IS THE ONE-STAGE TRAINING,
TS-FLA AND TS-GAP REPRESENT TWO-STAGE TRAINING STRATEGY

USING THE Lpre WITH FLATTEN AND GAP OPERATION RESPECTIVELY.
λ = 0.3 AND 0.1 IN (4) ACHIEVE THE BEST RESULTS FOR BOTH TS-FLA

AND TS-GAP THAT SHOWN IN THE 1ST AND 2ND BLOCKS RESPECTIVELY.

Train set Test set F-W TS-fla TS-GAP

BirdVox-20k
BirdVox-20k 93.63 93.54 94.29
warblrb10k 68.96 66.28 70.13
ff1010bird 79.61 79.13 82.52

warblrb10k
warblrb10k 94.66 94.23 94.86
BirdVox-20k 68.37 63.64 68.61
ff1010bird 86.47 86.48 86.73
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is consistent with the observation from Table I. Finally, by
comparing the AUCs of the TS-GAP and the baseline, our
proposed method can bring relative 12.1%, 9.9% and 6.7%,
1.8% AUC improvements over baseline on the “BirdVox-
20k” and “warblrb10k” based cross-domain tasks, respectively.
These gains also indicate that the proposed discriminative
training is more effective when there is large background
domain mismatch between training and test data.

C. Visualization

Fig. 2. Visualization of four pairs of discriminative acoustic representations.
Each row is corresponding to one audio clip. The top part of the box shows the
examples when the model trained and test both on warblrb10k. Bottom part
is the examples when model trained on BirdVox-20k and test on ff1010bird.

In Fig.2, we visualize four audio samples’ acoustic represen-
tations of the final layer of each discriminator. The vertical axis
represents the frame index, and the horizontal axis represents
the frequency index of all stacked channels. The upper and
lower parts within the dashed box respectively show the
representations on in-domain and cross-domain testing. The
1st and 3rd rows indicate the audio representations with bird
calls while the 2nd and 4th rows refer to the ones without
bird calls. It can be observed that each pair in the 1st and
3rd rows are very different. Each pair in the 2nd and 4th
have something in common which represent the background
sounds. According to this visualization, we can conclude that
the parallel discriminator is able to produce the discriminative
representations as we expect.

V. CONCLUSION

This paper investigates a new CNN-based architecture for
acoustic event detection task to alleviate the domain mismatch
problem, which features two CNN discriminators and an
additional discriminative loss. Moreover, we design two kinds
of training strategy and two alternative binary classifiers to
further improve the performances. Results on DCASE2018
task3 dataset have shown that our two-stage training strategy
with frame-wise classifier significantly outperforms the base-
line system in most cross-domain evaluation cases.

ACKNOWLEDGMENT

Thanks to DCASE 2018 Challenge for providing the
datasets. Yanhua Long is the corresponding author and the
work is supported by the National Natural Science Foundation
of China (No.62071302).

REFERENCES

[1] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D.
Plumbley, “Detection and classification of acoustic scenes and events,”
IEEE Transactions on Multimedia, vol. 17, no. 10, pp. 1733–1746,
October 2015.

[2] D. Stowell, Y. Stylianou, M. Wood, H. Pamuła, and H. Glotin, “Auto-
matic acoustic detection of birds through deep learning: the first bird
audio detection challenge,” Methods in Ecology and Evolution, vol. 10,
pp. 2672–2680, March 2019.

[3] W. Wei, H. Zhu, E. Benetos, and Y. Wang, “A-crnn: A domain adaptation
model for sound event detection,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
276–280.

[4] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, and X. Serra, “Audio tagging
with noisy labels and minimal supervision,” in Acoustic Scenes and
Events 2019 Workshop (DCASE2019),New York (USA), October 2019,
pp. 69–73.

[5] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Machine
learning, vol. 79, no. 1-2, pp. 151–175, 2010.

[6] V. Lostanlen, J. Salamon, A. Farnsworth, S. Kelling, and J. P. Bello,
“Robust sound event detection in bioacoustic sensor networks,” PloS
one, vol. 14, no. 10, p. e0214168, 2019.

[7] F. Berger, W. Freillinger, P. Primus, and W. Reisinger, “Bird audio
detection-dcase 2018,” DCASE2018 Challenge, Tech. Rep., June 2018.

[8] J. Shen, Y. Qu, W. Zhang, and Y. Yu, “Wasserstein distance guided
representation learning for domain adaptation,” in Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), vol. 32, no. 1, 2018.

[9] S. Liaqat, N. Bozorg, N. Jose, P. Conrey, A. Tamasi, and M. T. Johnson,
“Domain tuning methods for bird audio detection,” in Acoustic Scenes
and Events 2018 Workshop (DCASE2018), Surrey (UK), November
2018, pp. 163–167.

[10] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), vol. 30, no. 1, 2016.

[11] T. Asami, R. Masumura, Y. Yamaguchi, H. Masataki, and Y. Aono,
“Domain adaptation of dnn acoustic models using knowledge distilla-
tion,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2017, pp. 5185–5189.

[12] S. Mun and S. Shon, “Domain mismatch robust acoustic scene classi-
fication using channel information conversion,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 845–849.
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