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Abstract—Recently, the convolutional recurrent neural net-
work (CRNN) has been widely used in weakly labeled sound
event detection (SED) and audio tagging (AT) tasks. However,
it is possible that the information of frequency dimension is
not well used in the existing network design, which may cause
information loss or redundancy. We propose a frequency axis
pooling method to further boost the representation power of
CRNN. Based on the existing pooling functions, the frequency
axis pooling is applied on the feature map before recurrent
neural network (RNN) input in CRNN. Compared to frequency
axis no-pooling method, our method assigns different weights to
different frequency dimensions during compressing, which can
better compress frequency information and reduce information
redundancy. To evaluate the proposed method, three commonly
used pooling functions on frequency axis are compared on
the Dcase2017 task4 dataset. The experimental results show
that reasonable compression of frequency information helps to
improve the performance of AT and SED tasks significantly.
Among them, the frequency axis pooling based on linear softmax
performs the best on both tasks.

I. INTRODUCTION

Sound event detection is a task that detects not only event
categories but also the start and end times of sound events in
audio stream, which has a wide range of application scenarios,
including environmental and security monitoring [1], [2], [3],
[4] in real life.

The traditional SED method is based on strong labeled data
with the onset and offset time of each sound event which
is very tedious to be obtained manually. Therefore, many
weakly-labeled datasets have been published and applied to
SED research. The typical solution for weakly-labeled SED is
multiple instance learning (MIL) [5]. In MIL, we do not know
the label of each instance, only the label of the bag containing
many instances is provided. A bag containing one or more
positive instances is considered as a positive bag, otherwise
negative. If the instance is treated as a frame and the bag is
treated as an audio clip, it is very consistent with the weakly
labeled SED task. When the neural network gives the sound
event predictions on each frame, a pooling function on the
time axis is needed to compress the frame-level predictions and
aggregate them into clip-level predictions. In weakly labeled
SED, the earliest used pooling functions are max pooling [6]
and average pooling [7]. Later, Kong et al. [8] proposed an

attention pooling function, which has been adopted in several
works [9], [10]. Hong et al. [11] proposed gated multi-head
attention pooling (GMAP) for MIL, which can attend to the
information of events from different heads. In [12], pooling
is applied over both time and frequency axis during feature
extraction. In [13] and [14], authors used a two-dimensional
pooling to weigh and pool the neural network output.

Similarly, many researchers are paying attention to the
network construction of weakly labeled SED. CNN was intro-
duced for large-scale audio classification [15]. Lu et al. [16]
proposed a multi-scale RNN model that has the benefits of
modeling both the fine-grained and long-term dependencies.
A convolutional recurrent neural network (CRNN) [17] with
learnable gated linear units (GLUs) non-linearity applied on
the log mel spectrogram is proposed by Xu et al.. Since it
exhibits strong performance on audio tagging and localization
at the same time, the CRNN structure has been favored
by most scholars in weakly labeled SED task once it was
proposed. Yan [18] made improvements on this basis and
proposed a novel region multi-scale based attention method.
Recently, Hong et al. [19] proposed a CNN-based spatial and
channel wise attention (SCA) to explore the effect of attention
for weakly labeled audio tagging. Their work proves that
optimizing the network structure and using audio information
rationally within the network are very beneficial to improve
the accuracy of weakly labeled SED task.

In the paper, we propose a frequency axis pooling method
to improve the performance on weakly labeled sound event
detection and classification tasks. Based on the commonly
used pooling functions, experiments have been conducted to
apply three pooling functions on the frequency dimension of
the feature map after CNN output and before RNN input in
CRNN to find the best choice for SED tasks. This does not
only help the CRNN structure to better compress and utilize
the information of shallow audio features without generating
information redundancy, but also reduces the size of the feature
map and the amount of calculation. Furthermore, a combined
experiment of the pooling function on frequency and time axis
is designed to compare the performance of frequency axis
pooling on different time axis pooling in order to get the best
result.
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Fig. 1. Overview of sound event detection system adding the proposed method.

TABLE I
DEFINITION OF THREE POOLING FUNCTIONS.

Pooling function Definition

Average pooling yk =
1

n
Σiy

k
i

Linear softmax yk =
Σi
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Attention yk =
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k
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II. POOLING FUNCTION

In this section, we briefly introduce the existing pooling
function. In traditional weakly labeled SED, the role of pooling
function is to aggregate frame-level predictions into clip-level
predictions on the time axis. Wang [20] made a detailed
comparative analysis of five pooling functions. Among them,
linear softmax and attention pooling function achieve a strong
performance for both audio tagging and localization.

Let yki ∈ [0, 1] be the frame-level probability of a certain
sound event type k at the i-th frame, where k ∈ {1, ...,K}
and K is the number of events. yki is output after CRNN and
wk

i is the weights for each frame if necessary. Let yk ∈ [0, 1]
be the aggregated clip-level probability of the same event k.
yk is output after the pooling function. We list the definitions
of the three commonly used pooling functions to be compared
in Table I.

Finally, the model is trained to minimize the binary cross
entropy loss over all events, which is defined as:

min− 1

K

∑
k

(tk log yk + (1− tk)(1− log yk)) (1)

where tk ∈ [0, 1] is the clip-level ground truth of the sound
event k.

III. PROPOSED METHOD

An overview of our proposed method based on CRNN
system is illustrated in Fig.1. We apply pooling function not
only on the time axis, but also on the frequency axis.

The time-frequency characteristics of a piece of audio are
represented by X . A convolutional layer can be represented
as:

Y = W ∗X + b (2)

where ∗ is the convolution operator, W and b represent the
filter kernel and bias respectively. The input T × F feature
X ∈ RT×F is transformed into feature maps Y ∈ RC×T×F

after convolution by the filter kernel adding a new dimension
C, where T represents the number of time dimensions, F rep-
resents the number of frequency dimensions and C represents
the number of channels .

However, the input data Y ′ ∈ RC′×T of RNN is usually
two-dimensional. Therefore, the dimension reduction is often
performed after the output of the CNN part, which has two
commonly used methods, dimensional merging or dimensional
compression. As shown in Fig.2(a), Wang [20] merged the C
and F dimensions in Y into one new dimension C ′ without
pooling method, where C ′ equals F × C. For dimensional
compression, Kong [10] took the average pooling along the
F dimension and removed the F dimension in Y to achieve
dimension reduction. This method can be represented as:

Y ′ = g(Y ) =
1

F

F∑
i=1

Yi (3)

But neither of them conducted in-depth research on this
part. Since the pooling functions we introduce in section 2 is
similar to the dimension reduction on Y , we introduce those
pooling functions to frequency axis. That is, to replace g() in
formula (3) with pooling functions such as linear softmax or
attention in Table I. They can be represented as:

Y ′ =

F∑
i=1

Yi
2

F∑
i=1

Yi

(4)

Y ′ =

F∑
i=1

YiWi

F∑
i=1

Wi

(5)
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Fig. 2. Illustration of dimension reduction on feature map with frequency axis
no-pooling and pooling method.

The linear softmax pooling function on the frequency axis
computes Y ′ as a weighted average of Yi’s, where the weights
are equal to Yi’s themselves. The attention pooling function
on the frequency axis is also a weighted average, where the
weights Wi for each frequency dimension are learnable and
modeled by a dedicated layer in neural network.

As shown in Fig.2(b), we name the reduction of frequency
dimension in CRNN as frequency axis pooling. Frequency axis
pooling compresses the frequency dimension of the feature
map output by CNN and then sends the compressed feature
map that only retains the time and channel dimensions into
RNN. Meanwhile, the reduction of time dimension is named
as time axis pooling in our paper. Fig.1 clearly shows their
own position in the system.

In our experiment, the frequency dimension represents the
shallow features (Fbank) of audio clips. The importance of in-
formation on different frequencies is different. Simple average
compression makes the gradient distributed evenly across all
frequences in back propagation, which may cause information
loss. But linear softmax and attention pooling function will
avoid this problem [20]. Meanwhile, since Fbank is artificially
extracted feature, there is not much information available
after CNN learning. Therefore, if the channel and frequency
dimensions are spliced without compression, it may cause
information redundancy and affect the deep feature extracted
by CNN.

CNN (3×3 64)

CNN (3×3 64)

Average-Pooling (2×2)

Conv block, filter=128,pooling=2×2

Conv block, filter=256,pooling=2×2

Conv block, filter=512,pooling=1×1

Bi-directional GRU (256×2)

Dense layer (17,sigmoid)

Frequency axis pooling

Time axis pooling

Clip-level probs Frame-level probs

Conv block

Batch Normalization, Relu function

Batch Normalization, Relu function

Fig. 3. Illustration of CRNN structure with the frequency axis pooling layer
added between CNN and RNN. The size of all convolutional kernels is 3×3.

IV. EXPERIMENTS

A. Dataset

We evaluate the proposed method on the dataset of task 4 in
the DCASE2017 challenge [21], which is a subset of AudioSet
[22]. The subset contains 17 classes of events divided into two
categories: “Warning” and “Vehicle”. The data consists of a
training subset with 51172 audio clips, a development subset
with 488 audio clips and an evaluation set with 1103 audio
clips. The training subset is weakly labeled and no timestamps
are provided. The development and evaluation subsets are both
weakly and strongly labeled for evaluation. Most of these
audio clips have duration of 10 seconds.

B. Experimental setup

As shown in Fig.3, we use CRNN to build our model and
add frequency axis pooling layer between CNN and RNN.

We use log mel spectrogram (Fbank) as input feature. To
begin with, all audio clips are resampled to 32 kHz. The frame
length is 40 ms with the frame shift of 10 ms. Each chunk
has 1000 frames and 64 mel bins. The CNN part includes 4
convolutional blocks. Each block consists of 2 convolutional
layers and an average-pooling. Batch normalization and ReLU
function is applied after each convolutional layer. In RNN
part, the bi-directional gated recurrent units (GRU) [23] is
used to obtain past and future time information. During model
training, we use the Adam [24] optimizer with the initial
learning rate of 0.001 and reduce it to 0.0001 after 50000
iterations. The mini batch size is 32. The loss function is
binary cross entropy based on clip-level labels. SpecAugment
[25] and Mixup [26] is used in all experiments to prevent
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TABLE II
PERFORMANCE OF DIFFERENT SYSTEMS FOR AUDIO TAGGING (AT) TASK

ON THE DEVELOPMENT SET AND EVALUATION SET.

Development set
(Frequency axis + time axis) F1 P R

No-pooling + attention [20] - - - - - - - - -
No-pooling + linear softmax [20] - - - - - - - - -
Average + attention [10] 0.581 0.575 0.587
Average + linear softmax 0.623 0.650 0.598
Attention + attention 0.598 0.635 0.564
Attention + linear softmax 0.606 0.635 0.580
Linear softmax + attention 0.616 0.631 0.603
Linear softmax + linear softmax 0.627 0.670 0.589
Evaluation set
(Frequency axis + time axis) F1 P R

No-pooling + attention [20] 0.492 0.487 0.497
No-pooling + linear softmax [20] 0.495 0.469 0.523
Average + attention [10] 0.640 0.637 0.642
Average + linear softmax 0.647 0.687 0.612
Attention + attention 0.641 0.697 0.593
Attention + linear softmax 0.638 0.676 0.599
Linear softmax + attention 0.648 0.668 0.630
Linear softmax + linear softmax 0.647 0.696 0.606

from overfitting. Since thresholds need to be applied to the
predictions to obtain the presence or absence of sound events,
automatic thresholds optimization algorithm [10] based on
gradient descent (GD) of Adam is adopted, instead of applying
the same threshold on all events. All experiments are repeated
3 times with random network initialization and the average
result of each model is reported as the final result.

Three effective pooling functions of average, attention and
linear softmax are experimented on the frequency axis. In
order to further verify the effectiveness of frequency axis
pooling, attention and linear softmax pooling functions are
experimented on the time axis for combined experiments.

C. Results and Analysis

The performance of audio tagging in DCASE2017 task4
was evaluated with the F1 score on the clip level; sound event
detection was evaluated with the F1 score and error rate (ER)
on 1-second segments.

1) Audio Tagging (AT): Table 2 presents the F1, Precision
(P) and Recall (R) results for audio tagging on the develop-
ment set and evaluation set. The first column represents the
pooling method of frequency axis and time axis in models,
separated by symbol +. The symbol - - - indicates that the
results are not presented in paper.

Analyzing the F1 of evaluation set, the results of frequency
axis pooling method are significantly better than that of no-
pooling method. As we mentioned in section III, it may
be because that frequency dimension representing shallow
features doesn’t do pooling in deep network but retains all
its information, which will cause information redundancy.
However, the results of three pooling functions of average,
attention and linear softmax on the frequency axis aren’t
much different. Linear softmax is slightly better than other
two methods. Among them, the highest F1 on evaluation set
of 0.648 can be obtained when frequency axis adopts linear
softmax and time axis adopts attention pooling function.

TABLE III
PERFORMANCE OF DIFFERENT SYSTEMS FOR SOUND EVENT DETECTION

(SED) TASK ON THE DEVELOPMENT SET AND EVALUATION SET.

Development set
(Frequency axis + time axis) F1 ER

No-pooling + attention [20] - - - - - -
No-pooling + linear softmax [20] - - - - - -
Average + attention [10] 0.537 0.65
Average + linear softmax 0.545 0.675
Attention + attention 0.542 0.662
Attention + linear softmax 0.519 0.695
Linear softmax + attention 0.546 0.673
Linear softmax + linear softmax 0.550 0.652
Evaluation set
(Frequency axis + time axis) F1 ER

No-pooling + attention [20] 0.401 1.025
No-pooling + linear softmax [20] 0.437 0.843
Average + attention [10] 0.584 0.68
Average + linear softmax 0.578 0.663
Attention + attention 0.587 0.667
Attention + linear softmax 0.561 0.682
Linear softmax + attention 0.593 0.665
Linear softmax + linear softmax 0.583 0.661

2) Sound Event Detection (SED): The results of F1 and
ER for sound event detection on the development set and
evaluation set are given in Table 3.

In terms of the evaluation set, the experimental phenomenon
of SED task is consistent with that of AT task. The results
of pooling method on the frequency axis are also much better
than that of no-pooling method, which indicates that frequency
pooling is beneficial for improving the accuracy of both AT
and SED tasks. Comparing three pooling functions on the
frequency axis, linear softmax is better both in terms of F1
and error rate. On one hand, the highest F1 on evaluation set
of 0.593 can be obtained when frequency axis adopts linear
softmax and time axis adopts attention pooling function. On
the other hand, the lowest ER on evaluation set of 0.661 can be
obtained when both the frequency and time axis adopt linear
softmax function. It is noticed that the best results on F1 and
ER do not appear on the same structure, although they both
use linear softmax as frequency axis pooling function. We will
address this in the future work.

V. CONCLUSIONS

In this paper, we propose a frequency axis pooling method
for weakly labeled sound event detection and classification.
The experimental evaluation on the DCASE2017 Task4 dataset
shows that the proposed method of frequency axis pooling
outperforms the frequency axis no-pooling method both in
terms of AT and SED tasks. Among them, linear softmax
performs the best. Given that not merely weak labeled SED
tasks need to pay attention to frequency axis pooling, the
proposed method can be applied on strong labeled SED or
other audio tasks in our future work.
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