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Abstract— Multiple sound source localization is a hot topic of 

concern in recent years. In this paper, a multi-source localization 

method based on weight clustering and outlier removal is 

proposed to deal with the multiple source localization in the 

environment with high reverberation time. In this kind of 

environments, there are always some T-F points consisting of 

components from multiple sources mixed in the detected spares 

components. These T-F points, which are called outliers, usually 

carry the wrong information of localization and could lead to the 

decline of localization accuracy. To solve this problem, the Point 

Offset Residual Weight (PORW) and Source Offset Residual 

Weight (SORW) are introduced to measure the contribution of 

each T-F point to the localization. The binary clustering is 

proposed to distinguish and remove the outliers. After that, a 

statistical histogram of DOA estimation is drawn using the 

composite weight to weaken the effect of components that 

interfere with the localization. Finally, the multi-source 

localization is conducted through peak searching. The objective 

evaluation of the proposed method is conducted in various 

simulated environments. The results show that the proposed 

method achieves a better performance compared with the 

reference methods in sources localization. 

 
Keywords--multiple sources localization, direction of arrival 

estimation, reverberation, sparsity, sound field microphone 

I. INTRODUCTION 

The task of multiple sound source localization aims to 

estimate the Direction of Arrival (DOA) of the sound sources 

without knowing the information about the recording 

environment and sound sources. The accurate DOA 

estimations play an important role in sound field analysis and 

the corresponding technology remains an active research 

subject with applications in a wide variety of fields, which 

include hearing aids [1], intelligent transportation [2], robotics 

[3]-[4] human-machine interaction [5]-[7], and so on. 

It should be noted that in the actual recording environments, 

the presences of reverberation and noise make the DOA 

estimation of multiple and simultaneously sound sources a 

great challenge. Nowadays, the research on this problem has 

been well established, and the corresponding multi-source 

localization methods have formed their systems according to 

their different characteristics. Some notable examples like the 

Time Difference Of Arrival (TDOA) based methods [8][9], the 

subspace-based methods [10]-[11], the Direct Path Dominance 

(DPD) test based methods [12], and the Sparse Components 

Analysis (SCA) based methods [13]-[23].  

Among the methods mentioned above, the SCA-based 

methods are favored for their outstanding localization 

performance in underdetermined conditions (i.e., the number 

of microphones is smaller than the number of sound sources). 

It should be noted that the traditional SCA-based methods rely 

on the W-Disjoint Orthogonally (W-DO) property [24], which 

means the representations of sound sources in the Time-

Frequency (T-F) domain do not overlap. Each T-F component 

is consisting of direct-path signals from only one source. By 

transforming the recorded signals from the time domain to the 

T-F domain, the multi-source DOA estimation problem can be 

transformed to a single-source DOA estimation and the number 

of microphones required for localization is declined 

significantly. However, when there are more sources sound 

simultaneously, the W-DO assumption is hardly satisfied in the 

whole T-F plane. An extension of the W-DO assumption is 

proposed in Ref. [14]. Under this extended assumption, the 

whole T-F plane is divided into lots of tiny “time-frequency 

analysis zones (i.e., T-F zone, which is consists of a group of 

joint T-F points).” When the components of multiple sound 

sources are overlapped in T-F plane, there should be few T-F 

zones where only one source is dominant, these T-F zones are 

called “Single Source Zone” (SSZ). It has been proved that 

high localization accuracy can be obtained by making use of 

the T-F points within the detected SSZs. Moreover, Ref. [15] 

proposed a peak searching approach to jointly estimate the 

number of sources and their DOA, which has higher efficiency 

and accuracy of DOA estimation. Notably, the SCA-based 

methods include not only “zone-level” sparse components 

detection methods, but also “point-level” sparse components 

detection methods. These methods assume that there should 

always be some T-F points in the T-F plane whose components 

only consist of the direct-path signals of a single source. These 

T-F points are called the “Single Source Point” (SSP) and these 

methods are called the SSP-based methods [17][22]. Compared 

with SSZ-based methods, SSP-based methods focus more on 

the components of each T-F point instead of T-F zone, 

therefore, the T-F points with accurate clues of source 

localization are more likely to be selected.  

Even though the performance of these SCA-based methods 

looks appealing, when the recording environment gets complex 

(includes but not limited to the situation with more sources 

sound simultaneously, higher reverberation time, and/or 

background noise level), the localization accuracy might 

heavily degrade.  
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Fig. 1 The system block diagram of proposed method 

 

One of the main reasons leads to this problem is that there are 

usually outliers which carry wrong localization clues mixed in 

the selected components of both two types of methods. In 

complex environments, the increasing number of outliers could 

directly affect the results of localization. 

Aiming to settle this problem, this paper proposed a multi-

source localization method based on weight clustering and 

outlier removal. By introducing Point Offset Residual Weight 

(PORW) and Source Offset Residual Weight (SORW) [23], the 

contribution of each T-F point in the direction of the actual 

source can be evaluated. Besides, instead of using the empirical 

threshold, an adaptive threshold, which can be derived through 

binary clustering, is applied through the whole method to 

achieve an accurate multiple source localization in complex 

environments.  

The reminder of the paper is organized as follows: the 

proposed multi-source location method is introduced in Section 

2. Next, the proposed method is evaluated through various 

experiments in Section 3. Finally, the conclusion is achieved in 

Section 4. 

II. PROPOSED LOCALIZATION METHOD 

In this paper, a multi-source localization method based on 

weight clustering and outlier removal is proposed to deal with 

the localization accuracy decline problem caused by the 

outliers mixed in the detected sparse components. A soundfield 

microphone, which is consists of four closely placed 

microphone capsules, is used to record the speech signals. The 

system block diagram is shown in Fig. 1, the blocks marked in 

red indicate that the binary clustering is introduced in this step 

to obtain the adaptive thresholds. The whole method can be 

divided into four parts: Firstly, the signals recorded by 

soundfield microphone are transformed into T-F domain and 

split into T-F zones. The SSZs are selected from all the T-F 

zones. Secondly, the active intensity vectors of both SSZs and 

the T-F points within them are calculated. In order to measure 

the contribution of each T-F point to its corresponding SSZ and 

remove a part of outliers, PORWs are calculated for every T-F 

points. Then, a weighted histogram, which is used to conduct 

rough source localization, is drawn using PORW. Thirdly, the 

source active intensity is calculated based on the rough source 

localization. After that, the source active intensity is combined 

with the point active intensity to obtain the SORW of each T-F 

point. And the outliers are removed by clustering the SORW. 

Finally, the Composite Weight (CW) is obtained by combining 

the PORW and SORW, and the outliers are removed based on 

the clustering of CW. The accurate DOA estimation of sources 

can be achieved through the histogram drawn by CW with 

outliers removed. More details of these processes are described 

below: 

A. Modeling and SSZ detection 

In this paper, the signals from four channels of a soundfield 

microphone are chosen as the input of the system. Considering 

a situation that N sources sound simultaneously in an 

environment with reverberation and noise, the observed 

mixture can be modeled as: 

 

𝑥𝑖(𝑛, 𝑘) = ∑ℎ𝑖,𝑝(𝑘) ∙ 𝑠𝑝(𝑛, 𝑘) + �̇�𝑖(𝑛, 𝑘) + 𝑣𝑖(𝑛, 𝑘)

𝑁

𝑝=1

   (1) 

 

where 𝑖 ∈ {1,2,3,4} represents the index of the four soundfield 

microphone channels, ℎ𝑖,𝑝(𝑘) is the transfer function from 𝑝-

th source to the 𝑖-th microphone capsule. Ignoring the time 

delay during propagation, 𝑠𝑝(𝑛, 𝑘) is the T-F representation of 

the 𝑝-th source in 𝑛-th frame and 𝑘-th frequency point, and 

𝑥𝑖(𝑛, 𝑘) is the signals received by 𝑖-th microphone channel. 

�̇�𝑖(𝑛, 𝑘) and 𝑣𝑖(𝑛, 𝑘) denote the reverberation components and 

noise components mixed in the signals of channel 𝑖 , 

respectively. 
Based on the co-located characteristic of four channels of 

soundfield microphone, the SSZ can be selected through the 

Normalized Cross-Correlation (NCC) between the signals from 

different channels [14], the formula of NCC is given as below: 

 

𝑟𝑖𝑗(𝑍) =
𝑅𝑖𝑗(𝑍)

√𝑅𝑖𝑖(𝑍) ∙ 𝑅𝑗𝑗(𝑍)
                        (2) 
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where 𝑖, 𝑗 ∈ {1,2,3,4} (𝑖 ≠ 𝑗)  denote the indexes the 

microphone channels, 𝑍  denotes the a T-F zone, which is 

consist of a series of adjacent T-F points. 𝑟𝑖𝑗(𝑍) is the NCC 

calculated using the signals from channel 𝑖 and 𝑗 . 𝑅𝑖𝑗(𝑍)  is 

cross-correlation coefficient between channel 𝑖 and 𝑗, which is 

defined as follow: 

 

𝑅𝑖𝑗(𝑍) = ∑ |𝑥𝑖(𝑛, 𝑘) ∙ 𝑥𝑗(𝑛, 𝑘)|

(𝑛,𝑘)∈𝑍

               (3) 

 

From Ref. [14], it can be found that if the signals from a T-

F zone are only consist of the direct components from a single 

source, then the signals between channels should have similar 

waveforms, which means that the following formula should be 

satisfied: 

 

𝑟𝑖𝑗(𝑍) > 1 − 𝜀                                  (4) 

 

where 𝜀  is threshold to select the SSZ. In the traditional 

methods, the threshold is set by users according to the 

recording environment. However, the information about 

recording environment is not always available and the 

empirical threshold is not suitable for the changing condition. 

Therefore, in this paper, the SSZ is selected by binary 

clustering the NCC and taking the cluster with higher values.  

 

B. PORW-based outlier removal 

It should be mentioned that due to the feature of SSZ-based 

methods, only the characteristic of the whole T-F zone, rather 

than each point within it, is considered in these methods. That 

leads to the inevitable mixing of outliers which consist of 

complex components and carry the inaccurate localization 

information in the selected SSZ. Therefore, the PORW is 

proposed to distinguish the outliers by measuring the 

contribution of each T-F point to their corresponding SSZ. 

After selecting of SSZ, every T-F point within SSZ should 

be transformed into B-format [15] for further processing. The 

four channels of B-format signals are represented as 

{𝑥𝑤 , 𝑥𝑥, 𝑥𝑦 , 𝑥𝑧} , where 𝑤  represents the omnidirectional 

channel, 𝑥, 𝑦, 𝑧 represent the are three Cartesian bi-directional 

channels. Then, the activity intensity for T-F point (𝑛, 𝑘) is 

defined as: 

 

{
 
 
 

 
 
 𝐼𝑥(𝑛, 𝑘) =

√2

𝜌𝑐
[𝑅𝑒{𝑥𝑤

∗ (𝑛, 𝑘) ∙ 𝑥𝑥(𝑛, 𝑘)}]

𝐼𝑦(𝑛, 𝑘) =
√2

𝜌𝑐
[𝑅𝑒{𝑥𝑤

∗ (𝑛, 𝑘) ∙ 𝑥𝑦(𝑛, 𝑘)}]

𝐼𝑧(𝑛, 𝑘) =
√2

𝜌𝑐
[𝑅𝑒{𝑥𝑤

∗ (𝑛, 𝑘) ∙ 𝑥𝑧(𝑛, 𝑘)}]

           (5) 

 

where 𝑐 is the velocity of sound, 𝜌 is the density of the medium, 

𝑅𝑒{∙} represents taking the real part of the signals, [∙]∗ denotes 

taking conjugation. The activity intensity vector can be 

formed as 𝑰(𝑛, 𝑘) = [𝐼𝑦(𝑛, 𝑘), 𝐼𝑥(𝑛, 𝑘)]. The activity intensity 

vector for the SSZ can be calculated as: 

 

�̅�(𝑍) = ∑
𝑰(𝑛, 𝑘)

𝐾 ∙ ‖𝑰(𝑛, 𝑘)‖
(𝑛,𝑘)∈𝑍′

                          (6) 

 

where 𝑍′ is a SSZ whose size is 𝐾.  

Then, the localization information for the T-F points can be 

obtained using the activity intensity. For simplicity, the 

formula below only calculates the azimuth of T-F point (𝑛, 𝑘): 
 

�̂�(𝑛, 𝑘) = tan−1(
𝐼𝑦(𝑛,𝑘)

𝐼𝑥(𝑛,𝑘)
)                  (7) 

 

In the following, the PORW is expounded based on the two 

characteristics below:  

Characteristic 1: The outliers should be the minority in the 

SSZ and their directional information is randomly distributed. 

Characteristic 2: The directional characteristic of the whole 

SSZ should have offset relative to the actual source due to the 

outliers, while it shouldn’t be far away from it. 

Based on these characteristics, the PORW is defined as: 

 

𝑊𝑝(𝑛, 𝑘) = 1 − cos
−1 (

〈�̅�(𝑍)∙𝑰(𝑛,𝑘)〉

‖�̅�(𝑍)‖∙‖𝑰(𝑛,𝑘)‖
) ∙

1

𝜋
          (8) 

 

where ‖∙‖ represents the Euclidean norm, and 𝑊𝑝(𝑛, 𝑘) is the 

PORW given to the T-F point (𝑛, 𝑘) ∈ 𝑍.  

Since the directional information of the whole SSZ is much 

accurate than that of outlier, all the outliers within the SSZ 

should be given a lower value of PORWs. Therefore, the 

outliers can be filtered by binary clustering the PORWs and 

removing the cluster with lower PORWs.  

The following process is performed based on the PORWs 

and the azimuth estimations. Firstly, the statistical source 

component equalization [16] is conducted to avoid the 

overwhelm effect between components from different sources. 

Then, the weighted histogram can be drawn for rough DOA 

estimation. Finally, the histogram is smoothed to remove the 

burrs and the peak searching is conducted to estimate the DOA 

of sources. For simplicity, the q-th estimated DOA is 

represented as �̂�𝑞. 

 

C. SORW-based outlier removal 

Although the PORW can distinguish a part of outliers, the 

difference between outliers and desired points is not obvious 

enough to filter out most of the outliers. These outliers can form 

pseudo-peaks in the DOA estimation histogram and lead to 

mistakes in source counting. Since the outliers are consist of 

multiple and complex components, they usually locate 

randomly in the histogram. That means the peaks formed by 

outliers usually locates differently in the histogram before and 

after the smoothing. Based on this characteristic, the SORW is 

then proposed to remove the outliers that failed to be removed 

by PORW. Before giving the definition of SORW, the source 

active intensity vector should be calculated: 

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

952



𝑰𝑞 = 𝑰(𝑛𝑞
′ , 𝑘𝑞

′ )                                     (9) 

 

where 𝑰𝑞 is the source active intensity vector of 𝑞-th estimated 

DOA, (𝑛𝑞
′ , 𝑘𝑞

′ ) is the T-F point whose azimuth estimation is 

closest to the estimated DOA and can be found by: 

 

(𝑛𝑞
′ , 𝑘𝑞

′ ) = arg min
(𝑛,𝑘)

(|�̂�𝑞 − �̂�(𝑛, 𝑘)|)         (10) 

 

Then, the SORW is defined combining the active intensity 

vectors of sources and every T-F points: 

 

𝑊𝑠(𝑛, 𝑘) = 1 − cos
−1 (

〈𝑰𝑞∙𝑰(𝑛,𝑘)〉

‖𝑰𝑞‖∙‖𝑰(𝑛,𝑘)‖
) ∙

1

𝜋
          (11) 

 

where 𝑊𝑠(𝑛, 𝑘) is the SORW given to the T-F point (𝑛, 𝑘), and 

𝑞 is the index of DOA estimations corresponding to the current 

T-F point, which should satisfy 

 

𝑞 = arg min
𝑎
(|�̂�𝑎 − �̂�(𝑛, 𝑘)|)               (12) 

 

It can be found that the SORW gives the highest value to the 

T-F points whose estimated azimuths closest to the estimated 

DOA, and gives lower values to the T-F points around them. 

Since the peaks formed by outliers locate differently in the 

histogram before and after the smoothing, the outliers who 

form the local maximum in DOA statistical histogram can 

hardly be given the highest SORW. Therefore, the outliers can 

be distinguished through the binary clustering of the SORWs. 

 

D. CW-based outlier removal and post-processing 

In section II. B, and C, two kinds of weights are proposed to 

distinguish the outliers from the different ways. In this section, 

these weights are combined as a composite weight (CW) to 

jointly filter out the outliers, which can be represented as: 

 

𝑊𝑐(𝑛, 𝑘) = 𝑊𝑝(𝑛, 𝑘) ∙ 𝑊𝑠(𝑛, 𝑘)                (13) 

 

Although most of the outliers can be removed through 

PORW and SORW, the remaining points are not absolutely 

consisting of components of a single source. Therefore, each 

T-F point should be weighted according to its contribution to 

the localization. The histogram that used to perform 

localization is drawn using the composite weight: 

 

𝑌(𝜇) = {⌈�̂�(𝑛, 𝑘)⌉ = 𝜇|∑𝑊𝑐(𝑛, 𝑘)}             (14) 
 

where 𝜇 ∈ [1,360] represents the angle in the histogram, ⌈∙⌉ 
represents round down to take an integer, and 𝑌(𝜇) is the value 

of vertical coordinate at 𝜇  in the histogram. It should be 

mentioned that binary clustering of 𝑌(𝜇) is still needed to be 

conducted. The peaks located at the angle that are not likely to 

be the azimuth of actual sources are removed. Finally, the post 

processing [16] including smoothing and peak searching is 

conducted to finish the multiple source localization. 

III. EXPERIMENTAL EVALUATION 

In this section, the effectiveness of the proposed weight 

clustering and outlier removal based multi-source localization 

method has been verified via objective evaluation in simulated 

environments. The simulation room, which is a cube with a 

length of 6 meters, a width of 3 meters, and a height of 2 meters, 

is created using the ROOMSIM package. A soundfield 

microphone is set in the center of the room. All the sources are 

set around the microphone with 1-meter distance. The speech 

signals from the Chinese sub-database of NTT database have 

been chosen as the sound sources for analysis. Since a similar 

process is conducted for the estimation of azimuth and 

elevation except for the signals from different channels of the 

soundfield microphone are chosen as the input signals, the 

experimental evaluation only chooses azimuth to analyze for 

simplicity. The reference methods are selected from the 

proposed method without clustering, Statistical Source 

Component Equalization (SSCE) based method [16] and the 

SSP-based algorithm [22]. The experiments can be mainly 

divided into two parts according to the different settings of the 

room, the results and analysis are as follows: 

 

A. The evaluation of the proposed method in different 

reverberation time 

In this sub-section, three sources with a separation of 60° are 

set in the rooms with the reverberation time of {150ms, 300ms, 

450ms}. One hundred simulation situations, including different 

sources, different positions of sources, are conducted for 

analysis. The average error of each sources’ DOA estimation is 

calculated to evaluate the localization accuracy of each method. 

The results of the experiments are shown in Figure 2. 

It can be found in the Figure that with the increase of 

reverberation time, the average error of all the methods 

increases. When the reverberation time is 150ms, only a few 

outliers are mixed in the detected sparse components. The 

average error of the proposed methods is only 2.8 and the 

average errors of reference methods are nearly 10. In this 

situation, the outliers can hardly form the peaks (i.e., pseudo-

peaks) that can be confused with the real peaks. The difference 

in localization accuracy mainly lies in the effect of outliers on 

the true peaks. While when the reverberation time rises to 

300ms, the number of outliers within the sparse components 

detected by reference methods increases, and the pseudo-peaks 

are formed in the histogram, which makes the localization 

accuracy decline significantly. Different from the reference 

methods, PORW and SORW can effectively distinguish the 

outliers and desired points, by weighting each T-F point 

according to their contribution to the localization, the influence 

of outliers can be weakened. The clustering of weight could 

provide guidance to the removal of outliers, which makes the 

effect of outliers on localization as low as possible. Therefore, 

the proposed method using weight clustering could always 

obtain the lowest average error in multi-source localization. 
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Fig. 2   Objective comparison on the errors among sources in different 

reverberation times 

 

Fig. 3   Objective comparison on the errors among sources with 

different source number 

 

B. The evaluation of the proposed method with different 

number of sources 

In this subsection, the reverberation time of the room is set 

as 300ms, the numbers of sources are chosen from {2,3,4}, and 

the separation between sources is 60 ° . The results of one 

hundred simulation situations are shown in Figure 3. 

Similar to the result in the last subsection, the obvious trends 

of the increasing number of sources lead to the increasing 

average error, and the proposed method using weight clustering 

can usually obtain the lowest average error. Besides, it can be 

found that as for the change of active sources’ number, the 

outlier removal with clustering is more robust than the outlier 

removal with the empirical threshold. The reason is that for the 

method using an empirical threshold, as the number of 

simultaneous sources increases, the threshold with a constant 

value could increase the range that is considered as true peaks 

in the histogram, which introduces more outliers. To sum up, 

among all the situations, the proposed method can always 

achieve a better performance than reference methods, which 

implies the advantage of the proposed method. 

 

IV. CONCLUSION 

In this paper, the unavoidable problem of outliers’ existence 

in the sparse components detected by SCA-based methods is 

addressed. In order to distinguish the outliers, PORW and 

SORW are proposed to measure the contribution of every T-F 

point to the localization. The binary clustering is conducted to 

remove the outliers, which can be applied in various blind 

source localization scenarios. Finally, the composite weight is 

calculated to weigh the T-F points in the histogram according 

to their contribution and weaken the effect of components that 

interfere with the localization. The proposed method has been 

proved to achieve better performance over experimental 

environments compared with the reference methods. Besides, 

the proposed method can be integrated into other localization 

frameworks making use of DOA histograms plotted by SCA-

based methods.  
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