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Abstract—This paper proposes impulsive timing detection
based on multi-frame phase voting for Acoustic Event Detection
(AED). Since an impulsive sound exists for only a short time,
the accuracy of the event timing plays an important role in the
reduction of labeling costs and in the improvement of learning ef-
ficiency. We propose here a method that detects impulsive sounds
on the basis of acoustic signal processing using phase slopes,
which are among characteristics peculiar to impulsive sounds.
Phase slopes from multiple frames are converted to sample points
and aggregated by weighted voting. Evaluation employing frame-
wise F-scores under noisy environmental conditions shows an
improvement of 0.22 over a conventional single frame method
for speech processing.

I. INTRODUCTION

Acoustic Event Detection (AED) has become the subject
of much attention as a means of situation-understanding [1],
[2]. AED attempts to automatically recognize the class and
timing of target events from observed acoustic signals recorded
under the conditions in which numerous types of events
may occur simultaneously. For the purpose of monitoring the
cities and individual facilities, an impulsive sound of a short
time duration may be important as a clue to understanding
the situation because impulsive sounds often correspond to
hazardous events as falls of objects or people, or damage to
equipment.

In recent years, AED methods based on machine learn-
ing have been proposed [3], [4], [5] for modeling acoustic
characteristics that commonly appear in the events. A model
learns the correspondence of observed signals and labels which
indicates event-class and timing of occurrence. Mislabeled
data can cause deterioration of event detection performance
[6]. Events with a shorter duration sounds demand higher
temporal resolution [7]. This incurs the cost of annotating
large training datasets, including impulsive sounds, with high
temporal resolution.

One typical approach to annotation cost reduction is in-
vestigation of weakly labeled data which are only given the
event-class included in a sound clip. A number of deep
learning methods have been proposed [8], [9], [10], [11].
In the modeling with deep learning, investigations on self-
attention architectures [12], [13] contribute to the acquisition
of class representation. An event detection model with a
self-attention architecture seeks and models characteristics,
which contributes to event detection, in the process of training

from large datasets. Weak labels include the fuzziness in the
presence-timing of the target events. In the case of a target
event’s existing for only a short time, such as the case of an
impulsive sound, estimation of the event presence section is
especially difficult.

We have become interested in exploring a new detection
framework for an event observed as an impulsive sound, on the
bais of the acoustic characteristics of the sound. Our simple
idea for the framework is that the event-occurrence timing
can be given by signal processing which does not need to
use a large dataset for training. The impulsive event detection
system considered here consists of a timing detection block
and a classification block. The timing detection block gives
the classification block a cue for a section which contains
characteristics particular to the event class. The classification
block efficiently learns the event representation for each class
by limitation of sections in the training data. Timing detection
plays an important role in the detection of an event which is
observed as an impulsive sound.

In this paper, we propose impulsive timing detection based
on multi-frame phase voting for AED. Phase slopes, which are
among characteristics peculiar to impulsive sounds [15], are
calculated frame-by-frame with overlap shift. Our proposed
method emphasizes sample points by weighted voting based
on phase slopes from multiple frames. Section II here in
provides an overview of related impulsive sound detection
methods in the speech processing field and difficulties in
incorporating technology in the field into AED Section III
presents the proposed impulsive timing detection for AED.
Section IV presents out experimental setup and give evaluation
results. Finally, section V offers concluding remarks and
considers directions for future work.

II. RELATED WORK

Impulsive sounds have been detected as noise in order to
suppress them for speech quality improvement [16], [17],
[18], [19], [20]. Detection methods for noise suppression
can be roughly divided into two types: output time-domain
and feature-domain. Time-domain approaches [16], [18] ex-
hibit detection results sample-by-sample. Frequency-domain
approaches [19], [20] output the presence of impulsive sounds
for individual frequencies at given frames. Frequency-domain
approaches may often satisfy time resolution requirements

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

956978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



for AED because numerous AED methods adopt frame-wise
detection [8], [9], [10], [11].

In one example of a feature-domain approach, Sugiyama
et al. focused on phase linearity in impulsive sounds and
incorporated this characteristic as phase slope in a detection
algorithm [15], [21]. The phase slope of an input noisy
signal is compared with an ideal phase slope obtained from
an estimated peak point p̂. Our proposed method has been
inspired by this phase-based detection approach.

The relationship between a peak point and a phase slope
can be explained using time-domain input signal x(n) which
has a pulse with a magnitude of a at a certain sample point
p. The input signal x(n) is converted to the frequency-domain
signal X(k) according to following formula:

X(k) =

N−1∑
n=0

x(n)e−j·2πkn/N , (1)

where N is frame sample size and k is frequency. Assuming
that the input signal x(n) is 0 for n ̸= p, X(k) can be
simplified as

X(k) = |X(k)|ejθ(k) = ae
−2πkp

N , (2)

θ(k) =
−2πkp

N
, (3)

where θ(k) represents the phase and j is equal to
√
−1. The

phase slope is obtained by differentiating the phase θ(k) with
frequency k as follows:

dθ(k)

dk
=

−2πp

N
. (4)

Equation (4) shows that the slope is uniquely determined from
the pulse position p. The differentiation can be approximated
by the phase difference ∆θ(k) in the neighboring frequency
bins.

∆θ(k) = θ(k)− θ(k − 1) =
−2πp

N
. (5)

To obtain the phase difference ∆θ(k), a rotation vector
X̄rot(k) as given in (6) has been investigated for the purpose
of avoiding phase wrapping problems [22].

X̄rot(k) = X̄(k) · X̄∗(k − 1) = ej{θ(k)−θ(k−1)}, (6)

X̄(k) =
X(k)

|X(k)|
= ejθ(k), (7)

where ∗ represents a complex conjugate. From (5) and (6), the
phase difference ∆θ(k) as shown in (6) is obtained by

∆θ(k) = tan−1 Im{X̄rot(k)}
Re{X̄rot(k)}

. (8)

In the method proposed by Sugiyama et al, linearity index
LIθ(k) is calculated as in (9) and compared with a threshold
that is close to 0.

LIθ(k) = ∆θ(k)− −2πp̂

N
. (9)

The impulsive sample point p̂ is estimated from the largest
magnitude sample [15] or magnitude-weighted average of

phase differences [21]. However, it is difficult to apply the
method to AED because event sounds, which have a variety
of frequency characteristics and sound pressure levels, mask
the target impulsive sound, and this results in deterioration in
estimation performance.

III. PROPOSED METHOD

We propose impulsive timing detection based on multi-
frame phase voting for AED. Our proposed method estimates
impulsive sample points using weighted phase slopes cal-
culated from multiple frames. One key feature of proposed
method is that phase slopes can be converted to sample points
in individual frames. Multi-frame voting makes a contribution
to robust detection by emphasizing the presence of impulsive
sample points. Figure 1 shows an overview of the proposed
method.

An input signal is analyzed using overlap shift windowing
with frame shift width N/D, where N is frame size and D is
the number of overlaps. Equation (8) applies to the frequency
transformed version of xm(n), which should be denoted as
Xm(k) according to the previous equation. Local appearance
score sm(n) is calculated from phase slopes ∆θm(k) as given
in Eq. (10, 11) and stored in a storage space.

sm(n) =

K−1∑
k=0

um(n, k), (10)

um(n, k) =

1, if n =

⌈
∆θm(k)

N

2π

⌉
,

0, otherwise.
(11)

The storage space temporarily stores the local appearance
scores of the last D − 1 frames.

Local appearance scores calculated from current and past
frames are utilized for weighted voting. Impulsive score series
ym(n), which is a result of the voting, is calculated by
weighting and adding while still satisfying the same sample
positional relationship.

ym(n) =

D−1∑
d=0

wm−d · sm−d

(
n− N

D
d

)
, (12)

wm−d =
1

N

N−1∑
n=0

{sm−d(n)− s̄m−d} , (13)

where s̄m−d is averaged local appearance score in frame (m−
d). The weighting by in-frame variance wm−d emphasizes the
local appearance score in any frame that includes an impulsive
sample point. Equation (12) shows that D is related to total
sample number for voting.

To estimate the impulsive point, impulsive score series
ym(n) is fitted to Gaussian distribution f(n;µ, σ) by mini-
mizing an error function J(µ, σ) given as

min J(µ, σ) = E
[
(f(n;µ, σ)− ym(n))2

]
, (14)

f(n;µ, σ) =
1√
2πσ2

exp

(
− (n− µ)2

2σ2

)
. (15)
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Fig. 1. Overview of the proposed method.

where µ is the mean value and σ is the standard deviation. The
mean value µ of a fitted distribution is regarded as a candidate
for impulsive sample point p̂. Finally, the candidate is judged
to be an impulsive sample or not on the basis of threshold α.
Concentration score cm is calculated from the sample position
of candidate p̂ and its value as

Result =

{
1, if cm > α and p̂ > 0,

0, otherwise.
(16)

cm =
f(p̂;µ, σ)

σ
. (17)

In the case of the result = 1, frame m is judged to contain an
impulsive sound.

IV. EXPERIMENTS

A. Experimental condition

The timing-detection performance of the proposed method
has been evaluated using synthetic data. For purposes of
comparison, a conventional single frame method [15] has been
applied to same data

To confirm the robustness of detection methods, sound data
were synthesized by mixing clean impulsive sound signals into
environmental sound signals with Peak-Signal-to-Noise Ratio
(PSNR) controlled to be 10, 20, and 30 dB. Note that the
PSNR is low compared to the Signal-to-Noise Ratio (SNR), as
an impulsive sound is observed as instantaneous power signal.
In the case of multiple peaks in a event, PSNR is calculated
from the maximum peak value. Clean impulsive sound data are
selected from the Real World Computing Partnership Sound
Scene Database (RWCP-SSD) [23], in which the sound clips
are classified into three categories in accord with the type of
their sound sources. We used 2987 sound clips categorized as
being of the collision-sound-source type. Five types of envi-
ronmental sounds were chosen from the NOISEX-92 database
[24]: white noise, pink noise, babble noise, factory noise1, and
factory noise2. These sound types differ in terms of frequency
characteristics, especially with reference to bandwidth where
strong power conditions.

Detection performance was measured in terms of frame-
wise and event-wise F-scores. F-scores were based on the total
number of false negatives, true positives, and false positives
[25]. Frame-wise results were calculated on the basis of frame-
labels that showed a presence of peak points on a clean
waveform of the frame. Peaks on waveforms were detected
using a SciPy peak detection package. Event-wise results
showed whether an estimated peak point existed in an event
term. Event labels were obtained by means of binarization of
absolute amplitudes with 70th percentiles of the sound clips.

All signals were 16 kHz sampling and applied DFT, with
frame size N = 1024 and the number of overlaps D = 4.
Detection threshold α was determined for each condition of
the environment, using data of which 10 % had not been used
in testing. With the conventional method, frame-wise detection
results were obtained by thresholding for absolute average of
linearity index LIθ(k) at frequency k. The threshold used
in the conventional method was obtained as it was with the
proposed method.

B. Experimental results

Figure 2 compares the performance of the proposed method
with that of the conventional method with reference to both
frame- and event-wise F-scores. The proposed method outper-
formed the conventional method with reference to both frame-
and event-wise F-scores in noisy environments. Particularly
notable is that, under a factory noise2 condition at 10 dB, the
proposed method improves significantly over the conventional
method by 0.22 with reference to frame-wise score and 0.18
with reference to event-wise score.

The difference between the proposed and conventional
methods increased with decreasing PSNR, except under white
noise conditions; while white noise had uniform power at
all frequencies, the power levels of other noises differed at
different frequencies. In other words, some frequencies were
less affected by other event sounds under noise conditions
other than those under white noise. These results show that the
proposed method successfully emphasizes sample points using
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(a) Frame-wise F-score

(b) Event-wise F-score

Fig. 2. Experimental results for overall conditions.

the phase slopes, which some frequencies are less affected by
other event sounds.

Figure 3 shows detection results for wood collision sounds
with factory noise2 at 10 dB. In clean environment, the
acoustic feature of impulsive sound can be clearly observed
as peaks on a waveform (a). Factory noise, however, covers
the features on a noisy waveform (b) and noisy spectrogram
(c). The absolute average of linearity index LIθ(k) with the
conventional method fluctuates unsteadily, as can be seen in
(d). On the other hands, concentration score cm with the
proposed method (e) increased in the event frame, where it
can be observed as large peak on a clean waveform.

There is a gap between frame- and event-wise results
because some impulsive sounds are composed of several
peaks with different amplitude values, can be seen in (a).
The proposed method detects predominant peaks even if it
is difficult to detect all peaks in the event. This shows
that the proposed method provides not only event timing
but also the characteristic part of the impulsive event. Out
results also indicate that the impulsive timing detection may

Fig. 3. Results for wood collision sounds with factory noise 1at 10 dB. (a)
clean waveform, (b) noisy waveform, (c) noisy spectrogram, (d) absolute
average of linearity index LIθ(k) with conventional method (small value
indicates impulse), (e) concentration score cm with proposed method (large
value indicates impulse).

successfully support model training with weakly labeled data
with reference to training region limitation rather than self-
attention modules. As mentioned in Section I, combination
with classification block is indispensable for realization of
impulsive event detection system because the proposed method
only pays attention the feature of sound start timing. In
future, combined system will be evaluated from viewpoints of
detection and classification under various noise environment.

V. CONCLUSION

We have proposed here impulsive timing detection based
on multi-frame phase voting for AED. Our proposed method
emphasizes sample points by means of weighted voting using
phase slopes, which are among characteristics peculiar to
impulsive sounds. Evaluation with frame-wise F-measure un-
der noisy environmental conditions shows performance which
exceeds by 0.22 that of a conventional method for speech
processing. In future, we intend to consider incorporating
our timing detection into impulsive sound detection system
that distinguishes detected impulsive sounds in terms of event
class.
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