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Abstract—We propose a novel deep neural network (DNN)
architecture for universal sound separation. This task aims to
separate monaural mixture signals containing various sounds into
the corresponding source sound signals (e.g., speech, barking of
a dog, etc.). Previous studies used a speech separation network
and made mixtures for datasets by sampling dry source signals
randomly from a database. These methods did not use sound
class labels, although they are available during the training
step. We propose Multiple-Embedding Separation Networks, an
architecture using sound class labels in a training step. This
architecture contains multiple feature-extraction networks that
are further specialized for each sound class. Each network is
trained together with the class labels to capture characteristics
as class-specific embeddings. We evaluated the performance
of our proposed method and a method commonly used for
universal sound separation as a baseline. This evaluation adopted
a dataset containing six classes. As a result, the proposed method
outperformed the baseline in terms of the average separation
performance by 0.22 dB, especially for speech mixtures by 2.28
dB. We found a complex relationship between the amounts of
the data of the dry source signal of each class and the separation
performance.

I. INTRODUCTION

A. Motivation

When observing a sound signal in an actual environment,

some source signals may be overlapped as a mixture signal

and interfere with each other. Our global goal is to separate

such a mixture with various sounds (e.g., speech, barking of a

dog, etc.) into corresponding sources in a monaural condition.

This task is known as “universal sound separation” [1]–[3].

This technology will be applied in various systems using

sound information. For example, it will improve the selective

ability of assistive hearing devices, the performance of sound

classification, and the efficiency of editing video or sound data.

In universal sound separation, deep neural network (DNN)

methods have been applied. These methods achieved higher

performance than NMF-based methods (e.g., [4], [5]) in

monaural speech separation due to their high expressiveness.

A separation network applying DNN extracts a sound feature

from the input mixture and estimates masks to separate. Such

networks need a large amount of training data, namely, pairs

of the sources and the mixture. Kavalelov attempted to make a

dataset from the Pro Sound Effects Library database containing

encyclopedic samples of movie production recordings includ-

ing, for example, sounds of animal calls, creaking doors, and
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Fig. 1: The main concept of proposed method. In the training

step, each network is trained together with the class. In the

estimation step, all networks are used.

musical instruments [1]. In addition, some researchers have

approached this task with a dataset made in the same way [3],

[6]. However, these works did not use the sound class labels

explicitly during the training step, although they were given

the labels, or the sound data were divided into chunks based

on their sound characteristics in a database.

In this paper, we propose a novel deep neural network

architecture called Multiple-Embedding Separation Networks.

Figure 1 shows the main concept of our proposed method.

By explicitly mapping networks to the class labels, our DNN

architecture aims to learn information about the characteristics

of the sound directly from the class labels. The architecture

has multiple feature extraction networks called Embedding

Networks. Each Embedding Network is trained together with

the class labels to capture the characteristics as class-specific

embeddings. As an initial learning, the networks trained indi-

vidually using the dataset are divided by the sound class labels

for a few epochs.

We evaluated the separation performance of our proposed

method and TDCN++ [1] as a baseline method using a dataset
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Fig. 2: An overview of the DNN-based speech separation

model. DNN is used for a separation network.

containing six classes. To make analysis easier, the mixtures

of the training data consist of combinations of the same class.

As a result, the proposed method outperformed the baseline

in terms of the average separation performance by 0.22 dB,

especially for speech mixtures by 2.28 dB.

Our specific contributions are as follows:

1) We proposed a novel network architecture that improves

the separation performance of the sound class with a

large amount of data of the dry source signal.

2) We found that the separation performance for the class

with a small amount of data of the dry source signal

is supported by the learning results of the class with a

large amount of the data.

3) We obtained the results that could lead to a deeper

understanding of how networks capture characteristic of

the sound data when dealing with multi-classes.

B. Related works

Various DNN-based methods have been proposed, and suc-

ceeded in monaural speech separation [7]–[15]. These methods

have been developed through modeling the sound properly.

The earliest proposed method, Deep Clustering [7] estimates

separation masks using k-means in embeddings space. Deep

Attractor Network provides a more sophisticated separation

network by using an attractor vector as a perceptual effect

in human speech perception [9]. TasNet replaced Short-Time

Fourier Transform (STFT) with Encoder-Decoder transform

[11]. Conv-TasNet replaced the LSTM layer of TasNet with the

Temporal Convolutional Network (TCN) inspired by WaveNet

[16]. Dual-Path RNN modeled extremely long sequences of

sound with intra- and inter-chunk approaches. When training

or evaluating models in speech separation, almost all cases

use a benchmark dataset, such as WSJ0-2mix [7] or WHAM!

[17]. These datasets include over 50 hours of the pairs of the

sources and the mixture.

The main problem with these methods is their massive

dataset requirements. If a method is applied to a task with

only a small amount of the training data, it does not achieve

adequate performance. In the monaural condition, the task

is extremely difficult without the training data, unlike multi-

channel conditions, such as blind source separation based

on ICA or multi-channel NMF [18], [19]. There are a few

methods that do not learn the separation task directly [15],

but they still require a large amount of training data.

(a) Speech (b) Dog

(c) Bird (d) Bell

(e) Door (f) Printer

Fig. 3: Examples of data used in universal sound separation.

Horizontal axis and vertical axis represent time bins and

frequency bins respectively.

Less prior information on the characteristics of the sound is

given in universal sound separation. The class labels provide

one type of the sparse information available, so we should use

them effectively.

II. PRELIMINARY

A. Monaural Speech Separation with DNN

The purpose of monaural speech separation is to estimate C
source sound signals s1, s2, ...sC ∈ R

1×T from the observed

mixture signal smix =
∑C

i=1
si, where T is the length of

signals. With a DNN, the task is formulated as

[ŝ1, ŝ2, ...ŝC ] = fθ(smix), (1)

where ŝ1, ŝ2, ...ŝC are estimated signals and fθ(·) is a non-

linear transformation of DNN with parameters represented by

θ.

Figure 2 shows a conventional speech separation model. It

is composed of three parts: an analysis transform, a separation

network, and a synthesis transform. First, the input mixture is

transformed to an analysis basis w ∈ C
N×L by an analysis

transform, namely, Short-Time Fourier Transform (STFT) or

Encoder Transform [11]. This transform is formulated as

w = U(smix), (2)

where U(·) represents the analysis transform, N is the number

of the analysis basis and L is length of segment. Second,

the separation network estimates masks as many times as the

sources from w. The mask mi ∈ {m|m ∈ R, 0 ≤ m ≤
1}N×L represents the dominance of the i-th sources in each

element of w. This estimation is formulated as

[m1,m2, ...mC ] = M(w), (3)
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Fig. 4: The separation network of proposed method

where M(·) represents mask estimation transform by the sepa-

ration network. Then, the masked analysis basis is formulated

as w⊙mi, where ⊙ represents the Hadamard product. Third,

the masked analysis basis is transformed into estimated signals

by a synthesis transform, namely, Inverse STFT (iSTFT) or

Decoder Transform. This transform is formulated as

ŝi = V (w ⊙mi), (4)

where V (·) represents the synthesis transform.

The training data consists of pairs of sources and the

mixture. When making the dataset, C dry source signals are

taken from the database randomly as the source sound signals

and summed into the mixture signal.

B. Universal Sound Separation

Universal sound separation is formulated in the same way

as other approaches to monaural speech separation, although

characteristics of the data are different. Figure 3 shows ex-

amples of the data represented as a log-power spectrogram.

Aside from the speech, the examples are the same data used

in the previous studies [1], [2]. Each sound has a very different

time-frequency structure, for example, the spectrogram of the

speech has a clear harmonic structure, although one of the

creaking of doors is blurred in the frequency direction.

The data of sources used in previous studies have labels

or the sound data are divided into some chunks by their

characteristics in database. Even the labels are not given, the

sound classification method, such as [20]–[22] gives them

to each sources. However, previous studies used these labels

only for excluding background sound. Namely, the sounds of

barking of a dog and the sounds of printing papers belonged

to the same class.

III. MULTIPLE-EMBEDDING SEPARATION NETWORKS

Our architecture has multiple feature extraction networks

called Embedding Networks. Each network is trained together

with the class label to capture the characteristics as class-

specific embeddings. In this section, we introduce setting about

the sound class labels, details of architecture, and an initial

training.

A. Sound Class Label

When making the dataset, we assign the sound class labels

to all sources. The dataset are divided into classes by these

labels for the initial training. In addition to this, the labels are

useful for equalizing the amounts of the training data of each
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Fig. 5: Each step of the initial training. The first step is to

do for Integrator. In this step, Embedding network is chosen

randomly because the parameters of the trained is reset after

the step. In the second step, each Embedding Network is

trained. During the training, the parameters except Embedding

Networks, such as Integrator are fixed.

class when making the dataset. If the amounts of the training

data for each sound class is imbalanced, DNN is trained only

for the classes with a large amount of data. Equalizing the

amounts of the training data between classes leads to more

training for classes with a small amount of data.

B. Network Architecture

Our network is based on TDCN++ [1] but has a unique sep-

aration network. Figure 4 shows the structure of the separation

network. This network is composed of three parts: Embedding

Networks, Selector and Integrator.

First, Q Embedding Networks extract the sound feature by

transforming the analysis basis into embeddings e1, e2, ...eQ,

which are formulated as

ej = Ej(w) ∈ R
N×L, (5)

where E1(·), E2(·), ...EQ(·) are the transforms of the cor-

responding Embedding Networks. Each embedding is class-

specific. Second, Selector output an attention weight. This

architecture is inspired by [23]. The attention weight a repre-

sents which embedding is important for the separation, which

is formulated as

a = S(w) ∈ {a|a ∈ R, 0 ≤ a ≤ 1}Q, (6)

where S(·) represents the transform of Selector. aj is the

j-th element of a. It satisfies
∑

j aj = 1. Third, Integrator

estimates the separation mask as the output of the separation

network formulated as follows.

[m1,m2, ...mC ] = I(
∑

j

aj · ej), (7)
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TABLE I: The amounts of data of the dry source signal for each class.

Speech Dog Bird Door Bell Printer

hours 36.2 1.4 8.3 28.0 4.9 16.5

TABLE II: The separation performance for combinations of the same class in terms of SI-SDRi (dB). Average represents the

average SI-SDRi for six classes. The bottom two were trained on the same datasets.

Speech Dog Bird Door Bell Printer Average

baseline (all combinations) 3.62 8.48 5.20 10.30 6.84 2.66 6.18

baseline (combinations of the same class) 4.84 8.60 5.69 12.04 7.98 3.69 7.14

Our proposed 7.12 8.48 5.38 12.64 7.26 3.28 7.36

where I(·) represents the estimation transform by Integrator.

The embeddings are summed up and further transformed into

the mask.

Except to output of each part, we adopted TCN proposed

as a replacement for RNNs in various sequence modeling

tasks. TCN is also adopted by TDCN++, but we do not

adopt a longer-range skip-residual connection. The output

of Embedding Networks is raw output of TCN. The output

dimension of Selector is Q. To match the dimension, 1-D

Convolutional block make the output of TCN smaller into

Q× L. As a representative, the element of the end of the

time bin is extracted, and Softmax function transform it into

the attention weight. Integrator is the shallow version of the

separation network of TDCN++

C. Initial Training

If we trained total networks without the class labels from

beginning, there is a possibility that only one Embedding

Network is trained and the other Embedding Networks are

not. In this case, each Embedding Network is class-unspecific

and cannot perform at full potential. To avoid this, the initial

training using the class labels is needed.

The initial training consists of two steps. Figure 5 shows

each step of the initial training. First, Integrator and non-

separation network are trained using all datasets for a few

epochs. The input analysis basis is received by only one

Embedding Network. The mask estimation of Integrator is

formulated as follows.

[m1,m2, ...mC ] = I(e1). (8)

After this step, the parameters of the trained Embedding Net-

work are reset. Second, each Embedding Network is trained

individually using the different training divided into classes for

a few epochs. In this step, the parameters except Embedding

Networks are fixed. The mask estimation of Integrator is

formulated as follows.

[m1,m2, ...mC ] = I(ej), j = 1, ...Q. (9)

After this step, the total networks are trained using all data.

IV. EXPERIMENT

To evaluate proposed method, we compared the differ-

ence of the performance between our proposed method and

TDCN++ [1] as a baseline method using a dataset including

six sound classes.

A. Datasets

In order to simplify the initial training of the proposed

method and the analysis of separation performance, we made

a dataset of six sound classes and fixed the number of sources

that could overlap as mixture to two. For the six classes, we

chose the sound of speech, barking of a dog, humming of a

bird, creaking of a door, ringing of bells, and operation of a

printer. We called each class “Speech,” “Dog,” “Bird,” “Door,”

“Bell,” and “Printer,” respectively. The sound data of speech

are from the Japanese Newspaper Article Sentences Read

Speech Corpus (JNAS) 1. It includes 177 hours of people of

various ages and genders reading a newspaper aloud. The data

of the other classes are from the Pro Sound Effects Library

database 2 used in the previous studies [1], [2]. These data were

preprocessed, such as the use of a repetition and a clipping.

The repetition was carried out in the same manner of the

previous study [1]. Longer signals were clipped to 10 seconds.

Table I shows the amounts of data of the dry source signal.

In advance, we divided the data into training, validation, and

test datasets at a ratio of 10:1:1. All data were down-sampled

to 8000 Hz.

If the number of Embedding Networks matched that of all

combinations of the sound classes, the number of parameters

would be extremely large. For this reason, we made training

and validation datasets consisting of combinations of only the

same classes, for example, mixtures containing only Speech-

Speech. The training datasets of the classes have mixtures

ranging from 5.3 to 6.7 hours, and the validation datasets of

the classes have mixtures of 0.5 to 0.6 hours. The amounts

of the training data of each class are equalized, namely, the

total amounts of the training and the validation datasets are

34.4 hours and 3.4 hours, respectively. On the other hand,

as reference, we also made training and validation datasets

consisting of all combinations of classes for the baseline.

The training datasets of the classes have mixtures of 1.2 to

1.3 hours, while the validation datasets of the classes have

mixtures of 0.1 to 0.2 hours. The amounts of the training and

1http://research.nii.ac.jp/src/JNAS.html
2https://www.prosoundeffects.com/
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the validation datasets of each class are also equalized, namely

the total amounts of the training and the validation datasets are

29.6 hours and hours, respectively. The test dataset was made

of all combinations of the classes. The mixture amounts of the

combinations ranged from 0.4 to 0.6 hours.

B. Training and Evaluation Configuration

The number of Embedding Networks was six to match the

number of the classes. The initial training was done for five

epochs through the first and the second steps. All models were

implemented in Pytorch and trained using Adam [24] with

a batch size of 1 on a triple NVIDIA GeForce RTX 2080

paralleled GPU. The learning ratio was 3.0× 10−4. When the

validation loss did not decrease for ten epochs consecutively,

training was finished. The loss function was the negative scale-

invariant signal-to-distortion ratio (SI-SDR) [25]. SI-SDR is

given by

SI-SDR(s, ŝ) = 10 log
10

||αs||2

||αs− ŝ||2
, (10)

where α = 〈s, ŝ〉/||s||2, s is the source sound signal and

ŝ is the estimated signal. In the training step, utterance-

level permutation invariant training [26] was applied. The

hyperparameter settings for the network refer to the best

parameters of Conv-TasNet, except to Encoder-Decoder used

as analysis-synthesis transform and the number of 1-D Conv

repetitions of TCN. The parameters of the Encoder-Decoder

are the same as those in a previous study [2]. The number

of 1-D Conv repetitions for Embedding Networks, Selector,

and Integrator was one, although for the baseline it was two

due to the depth of our proposed method matching that of the

baseline. In the evaluating the step, model performance was

measured by SI-SDR improvement (SI-SDRi), which is the

improvement in SI-SDR of the estimated signals from the raw

mixture.

C. Results

Table II shows the performance of the same-class combi-

nations. Our proposed method outperformed the baseline in

average performance. The performance for Speech and Door

improved by 2.28 dB and 0.60 dB, although the performance

of the others degraded by up to 0.72 dB. Table III shows

the performance of the combinations of different classes. The

baseline trained with all combinations achieved the highest

performance among all of the combinations. In comparing

the proposed method and the baseline, the performance of the

proposed method for non-speech combinations outperformed

or underperformed the baseline by +0.80 dB to −0.97 dB, but

all combinations of Speech-Other degraded.

Figure 6 shows the average value of the attention weight

of Selector for the test dataset of the combinations of the

same class. Embedding Networks 1 to 6 were trained for

Speech, Dog, Bird, Door, Bell, and Printer in that order. The

darker component of the six contributes more greatly to the

separation.

TABLE III: The separation performance for combinations of

the different classes in terms of SI-SDRi (dB). The com-

ponent of the matrix represents the separation performance

corresponding to each combination of the test data. The order

of the performance is the same as in Table II

.

Speech Dog Bird Door Bell

8.71
Dog 6.68

6.66

12.53 12.74
Bird 8.79 10.44

7.06 10.85

14.42 15.14 9.06
Door 9.22 12.23 8.47

8.00 12.65 8.95

10.87 9.40 11.94 14.19
Bell 7.36 8.45 9.42 10.60

5.83 8.91 8.82 11.20

8.92 7.73 7.95 11.25 6.52
Printer 4.84 6.01 6.09 7.87 6.46

4.79 6.10 5.21 7.61 5.49

D. Discussion

The average value of the attention weight of Speech was

extremely biased, and the performance of the proposed method

outperformed the baseline significantly. This shows that the

proposed method is able to extract class-specific features

correctly. Comparing Table I and Table II, the proposed method

improved the performance for the class with a large amount of

data of the dry source signal. This relationship indicates that

the class-specific feature extraction is effective for the class

with a large amount of data of the dry source signal.

The average value of the attention weight of Dog was most

biased toward Embedding Networks 1 and 6, which were

trained for Speech and Printer. In Table I, Speech and Printer

each has a large amount of data of the dry source signal, but

Dog does not. This indicates that the separation performance

for the class with a small amount of data of the dry source

signal is supported by the learning result of the class with a

large amount of data. In the other words, the network learns the

basic features that are common to the sound data by training

a class with a large amount of data. This tendency of the

learning result is explained in terms of the data augmentation

techniques, which encourage capturing essential features by

increasing the amount of data increasing data.

In Table III, the proposed method was not effective for the

combinations not used in training. Consequently, we should

train the proposed architecture with all combinations for

the universal sound separation task. The number of model

parameters of the proposed method is proportional to the

number of Embedding Networks. If the number of Embedding

Networks matched the number of all combinations, the model

would need numerous parameters, thus requiring unrealistic

calculation costs. To avoid this problem, merging classes with

similar sound characteristics into a single class would be

effective.
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Fig. 6: The average value of the attention weight. (a) to (f)

correspond to the test dataset of each class. Emb-Net 1 to 6

were trained for Speech, Dog, Bird, Door, Bell, and Printer

in that order. The color bar shows the value of each attention

weight.

V. CONCLUSIONS

In this paper, we introduced a novel DNN architecture,

Multiple-Embedding Separation Networks. As a result of our

experiment, we found that the proposed method improved

the performance for a class with a large amount of data of

the dry source signal. In future work, we will study more

appropriate sound class labels. Our proposed method is not

able to handle all class combinations as of this moment. If

all combinations were labeled individually, a combinatorial

explosion would occur. This not only increases the number

of networks required, but also leads to the subdivision of

classes which decreases the amount of data for each class.

For this reason, we need the labels that can be assigned to

all combinations and that are not too large. To solve this

problem, we will adopt a sound classification approach to

integrate classes or combinations of classes that have similar

features. By using the output or the internal representation of

these methods, we will get more appropriate sound class labels

improving the separation performance.
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