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Abstract—In this paper, the formulation of multidimensional
frequency characteristics of a second-order nonlinear infinite
impulse response (IIR) filter is presented. The second-order
nonlinear IIR filter is based on a nonlinear differential equation
for an electrodynamic loudspeaker and used to reduce nonlinear
distortions of an electrodynamic loudspeaker. Hence, it is difficult
to increase the filter order without considering the constraints
of nonlinear differential equations to improve the capability
of the filter to reduce nonlinear distortions. In this paper, the
formulation of the frequency characteristics of the second-order
nonlinear IIR filter is presented as a solution to this problem.
This formulation is based on the principle of the second-order
nonlinear IIR filter for reducing the nonlinear distortions. From
this formulation, it is shown that the nonlinearities of the
second-order nonlinear IIR filter can be represented by the
multidimensional frequency characteristics, which is similar to
Volterra filters with the feedback structure. The validity of the
formulation is shown by comparing the frequency characteristics
of the conventional nonlinear IIR filter structure with those of
new formulated ones through some experiments.

I. INTRODUCTION

Electrodynamic loudspeakers [1], [2] are widely used for
audio systems, telephones, laptop PCs, and telecommunication
meeting systems among others. In particular, microspeakers
[3] are used in mobile phones, tablet-type devices, and portable
audio devices. Essentially, electrodynamic loudspeakers have
nonlinearities [4] and generate nonlinear distortions, which de-
grade sound quality. Moreover, they degrade the performance
of acoustic echo cancellers, the noise reduction performance
of active noise control systems, and so forth [5]. Therefore, it
is necessary to reduce nonlinear distortions.

One of the methods of reducing the nonlinear distortions
of an electrodynamic loudspeaker is to utilize a Volterra
filter [6]. The Volterra filter can represent a nonlinear input–
output relationship similarly to an electrodynamic loudspeaker
[7], and nonlinear components of each order can be rep-
resented individually. There are some studies on nonlinear
acoustic echo cancellers using a Volterra filter to reduce
the nonlinear distortions of an electrodynamic loudspeaker
[8]–[10]. Another method to reduce the nonlinear distortions
of an electrodynamic loudspeaker is to utilize a nonlinear
infinite impulse response (IIR) filter [11]–[18]. The nonlinear
IIR filter is based on a nonlinear differential equation for
an electrodynamic loudspeaker, and its filter coefficients are
determined by the physical parameters of the loudspeaker. A
second-order nonlinear IIR filter [11], [12] has the simplest

structure, on which we focus on in this study. Nonlinear IIR
filters have fewer filter coefficients, and their computational
complexity is lower than that of Volterra filter-based systems
[14], [15]. However, the improvement of the capability of
these nonlinear IIR filters to reduce the nonlinear distortions
can only be achieved by extending the nonlinear differential
equation for an electrodynamic loudspeaker. That is, it is
difficult to increase the filter order without considering the
constraint of the nonlinear differential equation. Moreover, it
is difficult to adopt adaptive algorithms to the nonlinear IIR
filters owing to the complex filter structure and the difficulty
to extend the filter order.

In this paper, the formulation of the multidimensional fre-
quency characteristics of a second-order nonlinear IIR filter
is presented. This formulation is based on the principle of
the second-order nonlinear IIR filter for reducing nonlinear
distortions. The principle of the nonlinear IIR filter can be
represented by utilizing the Volterra filter. On the basis of this
idea, it can be shown that the nonlinearities of the second-order
nonlinear IIR filter can be represented by the multidimensional
frequency characteristics similarly to the Volterra filter with the
feedback structure. The validity of the formulated frequency
characteristics is confirmed by comparing the frequency char-
acteristics of the conventional nonlinear IIR filter structure
with those of new formulated ones through some experiments.

II. SECOND-ORDER NONLINEAR IIR FILTER

A nonlinear IIR filter [11], [12], [15], [18] is derived
from a nonlinear differential equation of an electrodynamic
loudspeaker [4], [7]. In general, electrodynamic loudspeakers
have nonlinearities caused by force factor, stiffness, and self-
inductance [4], [7]. In this paper, the nonlinearities of force
factor and stiffness are focused on for simplicity of the
formulation. The nonlinear differential equation is as follows:

G0b(x)u(t)=a(t)+k(x)ω2
0x(t)

+

{
1+

(
1− Q0

Qm

)(
b2(x)−1

)} ω0

Q0
v(t), (1)

where u(t) is the input voltage [V], x(t) is the displacement
[m], v(t) = dx(t)/dt is the velocity [m/s], a(t) = d2x(t)/dt2

is the acceleration [m/s2] of the diaphragm, and t is the time
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[s]. Also,

G0 =
A0Bl0
Rdcm0

, ω0 =

√
K0

m0
,

Q0 =

√
m0K0

Rm+Bl20/Rdc
, Qm =

√
m0K0

Rm
,

where ω0 is the lowest resonance angular frequency [rad/s], Q0

is the quality factor at ω0, and Qm is the mechanical quality
factor at ω0. Moreover, m0, K0, and Rm are the mechanical
mass [kg], stiffness [N/m], and resistance [Ns/m], respectively,
Rdc is the electrical resistance [Ω], Bl0 is the force factor
[Wb/m], and A0 is the analogue gain.

b(x)=1 + b1x+ b2x
2 (2)

and

k(x)=1 + k1x+ k2x
2 (3)

are respectively the nonlinearities of the force factor and
stiffness [4], where b1 and b2 are the nonlinear parameters
for the force factor and k1 and k2 are those for the stiff-
ness. In [4], [7], the nonlinearities of the force factor and
stiffness can be represented by the second-order polynomials
of the displacement x. If the nonlinear distortions of the
electrodynamic loudspeaker are completely reduced, the force
factor and stiffness become constants, i.e., Bl(x) = Bl0
and K(x) = K0, respectively. Under this condition, the
displacement, velocity, and acceleration are respectively given
as follows.

xL(t)=L−1

[
G0

/(
s2 +

ω0

Q0
s+ ω2

0

)]
∗u(t), (4)

vL(t)=L−1

[
G0s

/(
s2 +

ω0

Q0
s+ ω2

0

)]
∗u(t), (5)

aL(t)=L−1

[
G0s

2

/(
s2 +

ω0

Q0
s+ ω2

0

)]
∗u(t), (6)

where L−1 is the inverse Laplace transform, s (= jω) is the
complex variable in the Laplace domain, and ∗ denotes the
convolution operator. Equations (4)–(6) represent the motions
of the diaphragm without the nonlinearity.

If the nonlinear distortions of the electrodynamic loud-
speaker are completely reduced, the sound propagated by the
loudspeaker does not include the nonlinear distortions. Under
this condition, the displacement, velocity, and acceleration
do not also include the nonlinear distortions because of the
proportional relationships of sound with displacement, veloc-
ity, and acceleration. This is the ideal condition and can be
represented by replacing x(t), v(t), and a(t) in (1) with (4)–
(6), respectively, as follows.

G0b(xL)uL(t)=aL(t)+k(xL)ω
2
0xL(t)

+

{
1+

(
1− Q0

Qm

)(
b2(xL)−1

)} ω0

Q0
vL(t), (7)

where uL(t) is the compensation signal that satisfies the ideal
conditions and used to reduce the nonlinear distortions. This
signal in the discrete time domain can be obtained by using the

Fig. 1. Block diagram of second-order nonlinear IIR filter [11], [12].

Fig. 2. Simplified block diagram of second-order nonlinear IIR filter [15].

bilinear transform to xL(t), vL(t), and aL(t) and substituting
them into (1) in the discrete time domain. For simplicity, b(x)
and k(x) are directly used to generate uL(t). A block diagram
of the second-order nonlinear IIR filter is shown in Fig. 1, and
the simplified block diagram in Fig. 1 is shown in Fig. 2. The
filter coefficients are

C(xL(n))=1 + β(xL(n)) + γ(xL(n)),

D(xL(n))=B1 + 2γ(xL(n)),

E(xL(n))=B2 − β(xL(n)) + γ(xL(n)),

hx0=hx2=
hx1

2
=

1

4f2
s α

, α=1+
ω0

2Q0fs
+

ω2
0

4f2
s

,

B1=

(
−2+

ω2
0

2f2
s

)
1

α
, B2=

(
1− ω0

2Q0fs
+

ω2
0

4f2
s

)
1

α
,

β(xL(n))=β0

{
b2(xL(n))−1

}
, β0=

ω0

2Q0fsα

(
1− Q0

Qm

)
,

γ(xL(n))=γ0 {k (xL(n))− 1}, γ0=
ω2
0

4f2
s α

,

where fs represents the sampling frequency [Hz]. The signals
are

uL(n) =
1

b(xL(n))
u′
L(n), (8)

u′
L(n) = {C(xL(n))ur(n) +D(xL(n))ur(n− 1)

+E(xL(n))ur(n− 2)} , (9)
xL(n) =G0{hx0ur(n)+hx1ur(n− 1)+hx2ur(n− 2)} ,

(10)
ur(n) = u(n)−B1ur(n− 1)−B2ur(n− 2). (11)

Here, the filter order depends on the order of the nonlinear
differential equation (7) 1.

1In [14], [15], a third-order nonlinear differential equation with nonlineari-
ties of the force factor, stiffness, and self-inductance is used and a third-order
nonlinear IIR filter is obtained.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

990



III. FORMULATION OF MULTIDIMENSIONAL FREQUENCY
CHARACTERISTICS OF SECOND-ORDER NONLINEAR IIR

FILTER

In this section, the formulation of the multidimensional fre-
quency characteristics of the second-order nonlinear IIR filter
is presented. To formulate the frequency characteristics, each
nonlinear component should be divided. Then, the frequency
characteristics without the feedback structure are formulated
on the basis of the principle of the second-order nonlinear IIR
filter. Finally, the frequency characteristics with the feedback
components are formulated.

A. Division of Compensation Signal into Each Nonlinear
Component

To formulate the frequency characteristics of the second-
order nonlinear IIR filter, the compensation signal uL(n)
is divided into linear and nonlinear components with the
following form: 2 .

uL(n) = u(n) +

Imax∑
i=2

uL,i(n), (12)

where uL,i(n) represents the ith-order nonlinear component
of uL(n) and Imax is the maximum order of the nonlinear
component. Imax is determined by the polynomial order of
b(x). For example, Imax = 11 when b(x) is a second-order
polynomial. It is easily shown that the linear component of
uL(n) is the same as the input signal u(n) by expanding (11)
with the polynomial approximation of b(x) shown as

1/b(xL(n)) ≈ 1 + b′1xL(n) + b′2x
2
L(n) + · · · . (13)

Here, it is easily seen that (12) is similar to the Volterra filter
[6], [7] as

uL(n) =

Imax∑
i=1

HF,i [ur(n)] , (14)

HF,i [ur(n)] =

N−1∑
p1=0

N−1∑
p2=0

· · ·
N−1∑
pi=0

hF,i(p1, p2, · · · , pi)

ur(n− p1)ur(n− p2) · · ·ur(n− pi),
(15)

where hF,i(p1, p2, · · · , pi) is the ith-order Volterra kernel
and N is the filter length. By using (14) and the Volterra
model of the electrodynamic loudspeaker, we can obtain the
compensation model of the nonlinear IIR filter, as shown in
Fig. 3.

By using (8) and (13), we can rewrite the compensation

2This division can be carried out by expanding (8) with polynomial
approximation of 1/b(x(n)) shown in (13). Then, it is shown that the first-
order component is completely the same as the input signal.

Fig. 3. Compensation model of second-order nonlinear IIR filter.

signal uL(n) as

uL(n) =
{
1 + b′1xL(n) + b′2x

2
L(n) + · · ·

}
u′
L(n), (16)

u′
L(n) = u(n) +

5∑
i=2

u′
L,i(n),

u′
L,2(n) = (2β0b1 + γ0k1)xL(n)ur(n)

+ 2γ0k1xL(n)ur(n− 1)

+ (−2β0b1 + γ0k1)xL(n)ur(n− 2), (17)

u′
L,3(n) =

{
β0

(
b21 + 2b2

)
+ γ0k2

}
x2
L(n)ur(n)

+ 2γ0k2x
2
L(n)ur(n− 1)

+
{
−β0

(
b21 + 2b2

)
+ γ0k2

}
x2
L(n)ur(n− 2). (18)

Then, the components of (12) are represented as

uL,2(n) = u′
L,2(n) + b′1xL(n)u(n), (19)

uL,3(n) = u′
L,3(n) + b′1xL(n)u

′
L,2(n) + b′2x

2
L(n)u(n). (20)

Here, the divided components above the fourth order are
omitted owing to page limitation.

B. Formulation of Multidimensional Frequency Characteris-
tics

The frequency characteristics of the second-order nonlinear
IIR filter are obtained on the basis of its principle shown
above and the Volterra filter (14). Here, the Volterra filter
has multidimensional frequency characteristics that can be
represented by multidimensional z transform as follows [19]:

HF,i(z1, z2, · · · , zi) =
N−1∑
p1=0

N−1∑
p2=0

· · ·
N−1∑
pi=0

hF,i(p1, p2, · · · , pi)

z−p1

1 z−p2

2 · · · z−pi

i , (21)

where zi = ejωi is the complex variable in the z transform
domain, and ωi = 2πfi is the angular frequency [rad/s].

First, from (10), (16), (19), and (20), second- and third-order
components are respectively written similarly to the Volterra
filter representation (15) as

uL,2(n) =

2∑
p1=0

2∑
p2=0

hF,2(p1, p2)ur(n− p1)ur(n− p2),

(22)

uL,3(n) =

2∑
p1=0

2∑
p2=0

2∑
p3=0

hF,3(p1, p2, p3)ur(n− p1)

ur(n− p2)ur(n− p3), (23)
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where

hF,2(p1, p2) = G0hxp2
(hN2,p1

+ b′1Bp1
) , (24)

hF,3(p1, p2, p3) = G2
0hxp2

hxp3
(hN3,p1

+ b′1hN2,p1
+ b′2Bp1

) ,
(25)

and

hN2,0 = 2β0b1 + γ0k1, hN2,1 = 2γ0k1,

hN2,2 = −2β0b1 + γ0k1,

hN3,0 = β0

(
b21 + 2b2

)
+ γ0k2, hN3,1 = 2γ0k2,

hN3,2 = −β0

(
b21 + 2b2

)
+ γ0k2, B0 = 1.

Here, to obtain (24) and (25), the following equation is used:

u(n) = ur(n) +B1ur(n− 1) +B2ur(n− 2). (26)

As shown in (21), the frequency characteristics of the second-
and third-order components in the z transform domain are
respectively written as

HF,2(z1, z2) =

2∑
p1=0

2∑
p2=0

h2(p1, p2)z
−p1

1 z−p2

2 , (27)

HF,3(z1, z2, z3) =

2∑
p1=0

2∑
p2=0

2∑
p3=0

h3(p1, p2, p3)z
−p1

1 z−p2

2 z−p3

3 .

(28)

Here, (27) and (28) do not include the frequency characteristics
owing to B1 and B2, that is, they cannot fully represent the
frequency characteristics of the nonlinear IIR filter since they
do not include the effect of the feedback path shown in Fig. 1.

Next, the multidimensional frequency characteristics with
the feedback part are formulated. From (19) and (20), the ith-
order output signals consist of weighted products of ur(n), for
example, hF,2(p1, p2)ur(n− p1)ur(n− p2). Hence, ith-order
filters include the characteristics of the feedback part, and total
multidimensional frequency characteristics are represented by

HMF,2(z1, z2) =
HF,2(z1, z2)

HB,2(z1, z2)
, (29)

HMF,3(z1, z2, z3) =
HF,3(z1, z2, z3)

HB,3(z1, z2, z3)
, (30)

where

HB,2(z1, z2) =

2∑
p1=0

2∑
p2=0

Bp1Bp2z
−p1

1 z−p2

2 , (31)

HB,3(z1, z2, z3) =

2∑
p1=0

2∑
p2=0

2∑
p3=0

Bp1Bp2Bp3z
−p1

1 z−p2

2 z−p3

3 .

(32)

(29) and (30) represent the second- and third-order mul-
tidimensional frequency characteristics of the second-order
nonlinear IIR filter, respectively.

TABLE I
SPECIFICATIONS OF TARGET LOUDSPEAKER.

Diameter 6.5 cm
Rated input 6 W (4.9 V)
Nominal impedance 4 Ω
Enclosure type Closed box
Enclosure volume 0.6 l

TABLE II
LINEAR AND NONLINEAR PARAMETERS OF TARGET LOUDSPEAKER.

ω0 1052 rad/s
Q0 1.78
Qm 5.32
Rdc 4.13 Ω
Rm 0.62 Ns/m
m0 3.14 ×10−3 kg
K0 3480 N/m
Bl0 2.26 Wb/m

b1 −108 /m
b2 −78800 /m2

k1 −38 /m
k2 17100 /m2

b′1 112 /m
b′2 93500 /m2

b′3 8.92×106 /m 3

b′4 4.36×109 /m4

b′5 6.48×1012 /m5

b′6 2.70×1015 /m6

IV. EXPERIMENTAL RESULTS

We confirmed the validity of the formulated multidimen-
sional frequency characteristics of the second-order nonlin-
ear IIR filter by computer simulation and compensation ex-
periment. In the simulation and experiment, the frequency
characteristics and compensation results for the formulated
characteristics should be similar to those for the conventional
nonlinear IIR filter.

In the following simulation and experiment, we used a real
electrodynamic loudspeaker and its parameters. Tables I and II
show the specifications and the linear and nonlinear parameters
of the target loudspeaker, respectively. Here, the parameters
were measured using a Klippel measurement instrument [20].
The sampling frequency fs, discrete Fourier transform (DFT)
size, and analogue gain A0 were set to 16000 Hz, 200, and
5.17, respectively. In the case of A0 = 5.17, the RMS values
of the input and output voltages were 0.87 and 4.5 Vrms, re-
spectively. Hereafter, we call the formulated multidimensional
characteristics (29) and (30) as the “proposed model” and
the conventional nonlinear IIR filter (8) as the “conventional
model.”

A. Computer Simulation

In the simulation, we compared the frequency character-
istics of the proposed model (29) and (30) with those of
the conventional model. The frequency characteristics of the
conventional model were identified by the frequency response
method [21]. Figure 4 shows the diagonal elements of the
multidimensional characteristics obtained by the conventional
and proposed models. From Fig. 4, the proposed model shows
the same frequency characteristics as the conventional model
except at low frequencies. This is because the frequency
characteristics of the conventional model include higher-order
intermodulation distortions owing to its identification principle
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(b) Third-order frequency
characteristic

Fig. 4. Diagonal elements of multidimensional frequency characteristics.

[21], that is, the harmonic components are

UL(2ω) = H2(ω, ω)U(ω)U(ω)

+H4(ω, ω, ω,−ω)U(ω)U(ω)U(ω)U(−ω)

+H6(ω, ω, ω,−ω, ω,−ω)

U(ω)U(ω)U(ω)U(−ω)U(ω)U(−ω)

+H8(ω, ω, ω,−ω, ω,−ω, ω,−ω)

U(ω)U(ω)U(ω)U(−ω)U(ω)U(−ω)U(ω)U(−ω)

+H10(ω, ω, ω,−ω, ω,−ω, ω,−ω, ω,−ω)

U(ω)U(ω)U(ω)U(−ω)U(ω)U(−ω)

U(ω)U(−ω)U(ω)U(−ω), (33)
UL(3ω) = H3(ω, ω, ω)U(ω)U(ω)U(ω)

+H5(ω, ω, ω, ω,−ω)U(ω)U(ω)U(ω)U(ω)U(−ω)

+H7(ω, ω, , ω, ω,−ω, ω,−ω)

U(ω)U(ω)U(ω)U(ω)U(−ω)U(ω)U(−ω)

+H9(ω, ω, ω, ω,−ω, ω,−ω, ω,−ω)

U(ω)U(ω)U(ω)U(ω)

U(−ω)U(ω)U(−ω)U(ω)U(−ω)

+H11(ω, ω, ω, ω,−ω, ω,−ω, ω,−ω, ω,−ω)

U(ω)U(ω)U(ω)U(ω)U(−ω)U(ω)U(−ω)

U(ω)U(−ω)U(ω)U(−ω), (34)

where U(ω) and UL(ω) are DFT of u(n) and uL(n) at
frequency bin ω, respectively. From (33) and (34), the second-
and third-order harmonic components include higher-order
intermodulation components, for example, the ω+ω+ω−ω
component, respectively. On the other hand, (29) and (30)
respectively consist of only second- and third-order compo-
nents because of the derivation procedures of (29) and (30).
Moreover, the components of the conventional model at 0 Hz
cannot be identified because of its identification principle [21].

Next, we compared the frequency characteristics of the
proposed model with those of the conventional model, which
consists of only u(n), uL,2(n), and uL,3(n), that is, the
conventional model is represented by u(n), (19), and (20).
Figure 5 shows the multidimensional frequency characteristics
under this condition. Here, the frequency characteristics of the
proposed model are the same as those shown in Fig. 4. From
Fig. 5, the frequency characteristics of the conventional and
proposed models perfectly match with each other except at 0
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Fig. 5. Diagonal elements of multidimensional frequency characteristics
without higher-order components.

TABLE III
EXPERIMENTAL CONDITIONS.

Input signal Multiple swept sinusoidal wave
Sampling frequency fs 16000 Hz
Fixed frequency f1 160 Hz
Swept frequency f2 80 – 2400 Hz
Input voltage 4.68 Vrms

Hz. Although other components except the diagonal elements
cannot be shown, they also completely match with each other.
Therefore, it can be said that the proposed model can represent
the conventional model, and the multidimensional frequency
characteristics are successfully formulated.

B. Compensation Experiment

In this experiment, we evaluated the amounts of reduction
of nonlinear distortions of the loudspeaker used in the previous
experiment. The compensation signals of the conventional
model were generated using (8), and that of the proposed
model was generated using (14), (29), and (30). Here, if
the frequency characteristics are successfully formulated, the
amounts of reduction obtained using (14) are almost the same
as those obtained using (8).

Measurement conditions and the arrangement of the mea-
surement devices are shown in Table III and Fig. 6, respec-
tively. The experimental results for second-order nonlinear
distortion are shown in Fig. 7. From Fig. 7, the compensation
amounts of both models are very similar, although there
are small differences between them due to the polynomial
coefficients in (13). These results are similar to those shown in
[18], indicating that our experiment was correctly conducted.
As stated above, the second-order nonlinear IIR filter has
limited its capability to reduce nonlinear distortions. Hence,
it can be expected that the multidimensional frequency char-
acteristics of the third-order nonlinear IIR filter may improve
its capability to reduce nonlinear distortions. Moreover, it
can also be expected that the frequency characteristics of the
modified second-order nonlinear IIR filter may also improve its
capability to reduce nonlinear distortions. From these results, it
can be said that the multidimensional frequency characteristics
of the second-order nonlinear IIR filter were successfully
formulated.
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Fig. 6. Arrangement of measurement devices.
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Fig. 7. Compensation results for second-order nonlinear distortion.

V. CONCLUSION

In this paper, the formulation of the multidimensional fre-
quency characteristics of the second-order nonlinear IIR filter
was presented. The frequency characteristics were formulated
on the basis of the principles of the nonlinear IIR filter
and Volterra filter. Some experimental results showed that
the formulated frequency characteristics can represent the
same nonlinear characteristics of the original second-order
nonlinear IIR filter. In the future, we will study an adaptive
algorithm for the second-order nonlinear IIR filter represented
by the formulated multidimensional frequency characteristics
and adopt it to nonlinear acoustic echo cancellations.

ACKNOWLEDGMENT

A part of this work is supproted by KDDI Founda-
tion Research Grant Program 2019 and JSPS KAKENHI
(JP21K17773).

REFERENCES

[1] R. H. Small, “Direct-radiator loudspeaker system analysis,” IEEE Trans.
Audio Electroacoust., vol. AU–19, no. 4, pp. 269–281, Dec. 1971.

[2] ——, “Closed-box loudspeaker systems part 1: Analysis,” J. Audio Eng.
Soc., vol. 20, no. 10, pp. 799–808, Dec. 1972.

[3] W. Klippel, “Modeling the large signal behavior of micro-speakers,” in
133rd Audio Eng. Soc. Conv., SanFrancisco, USA, Oct. 2012.

[4] ——, “Tutorial: Loudspeaker nonlinearities – causes, parameters, symp-
toms,” J. Audio Eng. Soc., vol. 54, no. 10, pp. 907–939, Oct. 2006.

[5] H. Schurer, “Linearization of electroacoustic transducers,” Ph.D. disser-
tation, University of Twente, 1997.

[6] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.
Florida: Krieger, 1989.

[7] A. J. M. Kaizer, “Modeling of the nonlinear response of an electrody-
namic loudspeaker by a Volterra series expansion,” J. Audio Eng. Soc.,
vol. 35, no. 6, pp. 412–432, June 1987.

[8] L. A. Azpicueta-Ruiz, M. Zeller, A. Figueiras-Vidal, J. Arenas-Garcia,
and W. Kellermann, “Adaptive combination of Volterra kernels and its
application to nonlinear acoustic echo cancellation,” IEEE Trans. Audio
Speech Lang. Process., vol. 19, no. 1, pp. 97–110, Jan. 2011.

[9] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, W. Kellermann,
and J. Arenas-Garcia, “Enhanced adaptive Volterra filtering by automatic
attenuation of memory regions and its application to acoustic echo
cancellation,” IEEE Trans. Signal Process., vol. 61, no. 11, pp. 2745–
2750, Mar. 2013.

[10] R. Saika, K. Iwai, and Y. Kajikawa, “Improvement of convergence
property on adaptive wiener filter using stochastic gradient adaptive
algorithm,” in International Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS 2018), Okinawa, Japan, Nov.
2018, pp. 421–426.

[11] K. Takemura, T. Nakatake, and J. Kasai, “Non-linear distortion reduction
of dynamic loudspeaker using non-linear IIR filter (in Japanese),” IEICE
Tech. Rep., no. EA96–74, pp. 65–72, Nov. 1996.

[12] R. Nakao, Y. Kajikawa, and Y. Nomura, “An estimation method of
parameters for closed-box loudspeaker system,” IEICE Trans. Fundam.,
vol. E91–A, no. 10, pp. 3006–3013, Oct. 2008.

[13] K. Iwai and Y. Kajikawa, “Linearization of dynamic loudspeaker system
using third–order nonlinear IIR filter,” in 20th Eur. Signal Process. Conf.
(EUSIPCO 2012), Bucharest, Romania, Aug. 2012, pp. 1970–1974.

[14] ——, “Nonlinear distortion reduction for electrodynamic loudspeaker
using nonlinear filtering,” in 22nd Eur. Signal Process. Conf. (EUSIPCO
2014), Lisbon, Portugal, Sept. 2014, pp. 1357–1361.

[15] ——, “Third-order nonlinear IIR filter for compensating nonlinear
distortions of loudspeaker systems,” IEICE Trans. Fundam., vol. E98–A,
no. 3, pp. 820–832, Mar. 2015.

[16] ——, “Modification of second-order nonlinear IIR filter for compensat-
ing linear and nonlinear distortions of electrodynamic loudspeaker,” in
25th Eur. Signal Process. Conf. (EUSIPCO 2017), Kos, Greece, Sept.
2017, pp. 2753–2757.

[17] ——, “Modified 2nd-order nonlinear infinite impulse response (IIR)
filter for compensating sharpness and nonlinear distortions of electrody-
namic loudspeakers,” J. Acoust. Soc. Amer., vol. 140, no. 4, pp. 3058–
3058, 2016.

[18] ——, “Modified second-order nonlinear infinite impulse response (IIR)
filter for equalizing frequency response and compensating nonlinear
distortions of electrodynamic loudspeaker,” Appl. Acoust., vol. 132, pp.
202–209, Mar. 2018.

[19] T. Koh and E. J. Powers, “Second-order Volterra filtering and its
application to nonlinaer system identification,” IEEE Trans. Acoust.
Speech Signal Process., vol. ASSP-33, no. 6, pp. 1445–1455, Dec. 1985.

[20] Klippel GmbH, “The development tool of audio technology,”
http://www.klippel.de/our-products/rd-system.html, 2013.

[21] M. Tsujikawa, T. Shiozaki, Y. Kajikawa, and Y. Nomura, “Identification
and elimination of second–order nonlinear distortion of loudspeaker
systems using Volterra filter,” in IEEE Int. Symp. Circuits Syst. (ISCAS
2010), Geneva, Switzerland, May 2000, pp. 249–252.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

994


