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Abstract—This paper presents an improvement to a two-stage
algorithm for estimating the phase from only the amplitude with
deep neural networks (DNNs). Rather than directly estimating
the phase, the two-stage method estimates phase derivatives, i.e.,
instantaneous frequency (IF) and group delay (GD), by using
DNNs in the first stage, and it then reconstructs the phase
from those derivatives using a least-squares (LS) method in the
second stage. A problem with the algorithm is that the periodicity
of the estimated IF and GD significantly affects the results of
LS estimation. In this paper, we replace the LS method in the
second stage with a new maximum-likelihood method using von
Mises distribution. The error function is minimized by using a
regularized Newton’s method. Experimental results demonstrate
that the proposed method can reduce the IF and GD errors of
the reconstructed phase in the second stage and achieve a higher
overall speech quality than conventional methods.

I. INTRODUCTION

In the last decade, phase reconstruction for a given am-
plitude has gained popularity as recent studies [1], [2] have
demonstrated its importance. It has been shown that phases
reconstructed from the amplitude and observed noisy/mixed
phases help to produce higher-quality time-domain signals in
speech enhancement [2]–[4] and source separation [5]–[7]. In
other applications such as speech synthesis [8]–[10], in which
observed phases are unavailable, phase reconstruction relies
only on the information from the amplitude. Various algo-
rithms have been proposed. The Griffin-Lim (GL) algorithm
[11] and its modifications [12], [13] are well-known iterative-
based methods using the consistency property of the short-time
Fourier transform (STFT). Recent studies [14]–[16] use deep
neural networks (DNNs) to benefit from the prior knowledge
of a signal.

Instead of estimating the phase directly from the amplitude,
[17] proposed a two-stage phase reconstruction algorithm
utilizing the time and frequency derivatives of the phase, i.e.,
instantaneous frequency (IF) [18] and group delay (GD) [19].
Fig. 1 shows a block diagram of this method. In the first
stage, the IF and GD are reconstructed from the amplitude
by using DNNs. By differentiating, these phase derivatives
become more structured and less sensitive; therefore, they can
be reconstructed much more easily than the phase itself. In the
second stage, the phase is estimated from the IF and GD by
using a least-squares (LS) method. Experimental results have
demonstrated that this two-stage strategy is more efficient than
directly reconstructing the phase. However, the periodicity of
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Fig. 1. Block diagram of two-stage phase reconstruction algorithm.

the estimated IF and GD may hurt the performance of the
LS-based algorithm. For instance, the values of −π and π are
identical for the IF and GD, but they make a big distance
for the LS error. Although [17] proposed a GD-modification
scheme for dealing with this problem, this scheme seems to be
less effective when the errors of the estimated IF and GD are
high. Starting with the same first stage, a more recent study
[20] proposed an alternative simple algorithm for the second
stage in which the phase estimate at each time-frequency (TF)
bin is the weighted average of its estimates calculated from
the previously estimated phase elements in its vicinity.

In this paper, adopting the same approach as in [17], we
tackle the problem of the LS method described above by
replacing the quadratic error function with a cosine error func-
tion. In other words, the LS problem becomes a maximum-
likelihood (ML) problem with von Mises distribution. We also
utilize amplitudes as weights to emphasize the importance
of phases at high-amplitude positions. The error function is
minimized by using a regularized Newton’s method.

The remainder of the paper is organized as follows. In Sec-
tion II, notation, formulation, and related works are described.
In Section III, we present the proposed phase-reconstruction
method. Section IV outlines the experiments and presents the
results. Finally, Section V concludes the paper.

II. NOTATION, FORMULATION, AND RELATED WORKS

In this section, we first define the notation and formulation.
Then, we present brief descriptions of the conventional two-
stage phase reconstruction algorithms.

A. Notation and formulation

Let Xk,l be the STFT of a discrete-time speech signal,
where l = 0, . . . , L − 1 and k = 0, . . . ,K − 1 are the time
frame index and frequency bin index, respectively. Then, its
phase and amplitude spectra are denoted as φk,l = ∠ [Xk,l]
and |Xk,l|, respectively, where ∠ is an angle operator.
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IF is defined as the time-derivative of a phase, which can
be estimated by

vk,l = princ{φk,l+1 − φk,l}, (1)

where princ{·} is a function mapping the phase difference into
the range of (−π, π]. Similarly, the GD, which is a negative
frequency-derivative of a phase, can be calculated as

uk,l = princ{φk,l − φk+1,l}. (2)

Let φl = (φ0,l, · · · , φK−1,l)
T be the phase spectrum at frame

l, where (·)T is a matrix transposition operator; the vector-
based formulas of IF and GD at frame l are given as

vl = φl+1 − φl, (3)

and
ul =Dφl, (4)

respectively, where D is a (K − 1)×K matrix defined by

Di,j =


1, if i = j

−1, if i+ 1 = j

0, otherwise
. (5)

Note that the princ{·} function is omitted in (3) and (4) (and
from now on) for the sake of convenience.

The main objective of the two-stage phase reconstruction
algorithms is to estimate the IF v and GD u from a given
amplitude |X| and then reconstruct the phase φ that preserves
as much IF and GD information as possible.

B. IF and GD estimation from amplitude using DNNs

In the first stage of the two-stage phase reconstruction
algorithm [17], the IF and GD are modeled by fully connected
DNNs. The DNNs are trained to reconstruct the IF and GD
for each frame l by minimizing the following loss function:

LDNN(yl, ỹl) = −
K−1∑
k=0

cos (yk,l − ỹk,l), (6)

where yl and ỹl are the original and estimated values of the
output, which is either the IF or GD. The inputs are vectors
consisting of the log amplitude at the current and ±2 frames.

C. Estimation of phase from its derivatives

Regarding the second stage, in which the phase is recon-
structed from the estimated IF and GD, two methods, the
baseline LS and weighted-average, are reviewed below.

1) Baseline LS method: The authors of [17] proposed
recursively reconstructing each phase spectrum by minimizing
the following frame-wise quadratic error function:

LLS(φl) = ‖φl − φl−1 − vl−1‖22 + ‖Dφl − ul‖22, (7)

where ‖·‖2 is a Euclidean norm, φl−1 is the previously
estimated phase spectrum at frame l − 1, and vl and ul
are replaced by their estimates ṽl and ũl in the first stage,
respectively. The solution to the LS problem in (7) is

φ̂l = (IK +DTD)−1(φ̂l−1 + ṽl−1 +D
Tũl), (8)

where IK is a K ×K identity matrix.
From (6), it is clear that the estimated IF and GD are

also periodic. This 2π ambiguity significantly affects the
LS solution. To solve this problem, [17] proposed a GD-
modification scheme fixing the IF and modifying the GD so
that they are consistent with each other.

2) Weighted-average method: Utilizing amplitude informa-
tion, [20] proposed a simple method for calculating each phase
element as a weighted average of its estimates as

φ̂k,l = ∠
P∑
p=1

α
(p)
k,l · e

jϕ
(p)
k,l , (9)

where ϕ(p)
k,l is an estimate of φk,l calculated by using the IF,

GD, and the pth previously estimated phase element near the
TF bin (k, l). α(p)

k,l denotes the weight, and P is the number
of the neighbors involved. [20] empirically determined that
P = 3 yields the best result, corresponding to the TF bins of
(k − 1, l), (k, l − 1), and (k + 1, l − 1).

III. PROPOSED ESTIMATION OF PHASE FROM ITS
DERIVATIVES

We start with the same first stage as in [17] for reconstruct-
ing the IF and GD from a given amplitude. To overcome
the problem of the LS method when estimating the phase
from the IF and GD in the second stage, taking the idea of
[14], we propose an ML estimation method using von Mises
distribution, whose probability density function is given by

f(x|µ, κ) = eκ cos(x−µ)

2πI0(κ)
, (10)

where µ is a measure of location, κ is a measure of con-
centration, and I0(κ) is a modified Bessel function of order
0. Because the contribution of each TF bin of the STFT
to the reconstructed time-domain signal highly depends on
the amplitude of that bin, we use the amplitude as weights
to emphasize the importance of the phase at high-amplitude
positions. By taking the negative logarithm of (10), we define
the loss function as

LML(φl) = −
K−1∑
k=0

(
|Xk,l| cos (uk,l − ûk,l)

+ |Xk,l−1| cos (vk,l−1 − v̂k,l−1)

+ |Xk,l| cos (vk,l − v̂k,l)
)
.

(11)

Similar to (7), uk,l and vk,l in (11) are also replaced by their
estimates ũk,l and ṽk,l from the first stage, and the phase at
frames other than l are assumed to be constant. A novel point
of (11) is that we also consider the contribution of the IF at the
current frame vk,l (in other words, the phase at the next frame
φk,l+1) in addition to that at the previous frame vk,l−1. This
point makes the relationship between consecutive phase frames
more solid. With several simple mathematics transformations,
the gradient vector ∇φl

LML(φl) can be calculated with the
kth element defined as

∂LML(φl)

∂φk,l
= sin (φk,l)Ck,l − cos (φk,l)Sk,l, (12)
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where
Ck,l = |Xk,l| cos (φ̂k,l+1 − ṽk,l) + |Xk,l−1| cos (φ̂k,l−1 + ṽk,l−1)

+ |Xk,l| cos (φk+1,l + ũk,l) + |Xk−1,l| cos (φk−1,l − ũk−1,l),
(13)

and Sk,l is defined the same as Ck,l, except that all the cosine
functions are replaced by sine functions. Note that, at the
boundaries of k = 0, k = K − 1, l = 0, and l = L − 1,
we remove the terms containing the indices of k − 1, k + 1,
l− 1, and l+ 1, respectively, from Ck,l and Sk,l. We can see
from (12) that the partial derivative of LML(φl) with respect
to φk,l contains only two phase elements of the same frame,
i.e., φk+1,l and φk−1,l. Consequently, the Hessian matrix of
LML(φl) is a symmetric tridiagonal matrix whose element on
the main diagonal is

∂2LML(φl)

∂φ2k,l
= cos (φk,l)Ck,l + sin (φk,l)Sk,l, (14)

and the element on the first diagonal above (or below) is

∂2LML(φl)

∂φk,l∂φk+1,l
= −|Xk,l| cos (φk,l − φk+1,l − ũk,l). (15)

This fact motivates us to use Newton’s method to iteratively
update the phase estimate as

φ̂
(i)
l = φ̂

(i−1)
l −H−1∇φl

LML(φ̂
(i−1)
l ), (16)

where φ̂(i)
l is the estimate of φl at the ith update, and H is

the Hessian matrix of LML(φl) measured at φ̂(i−1)
l . Since H

is tridiagonal, the vector H−1∇φl
LML(φl) can be calculated

with the complexity of O(n) [21] (instead of the O(n3)
required by Gaussian elimination for a non-tridiagonal matrix
H). A problem with (16) is that H is often not positive
definite as LML(φl) is periodic. To deal with this, we apply a
regularization strategy as in [22]. The update becomes

φ̂
(i)
l = φ̂

(i−1)
l − (H + γIK)−1∇φl

LML(φ̂
(i−1)
l ), (17)

where γ is a damping factor. γ = 0 is equivalent to no
regularization. When γ is large, H is dominated by γIK , and
(17) approximates the standard gradient descent at a rate of
1/γ. Ideally, γ is adaptive to each update so that it is large
enough to offset the negative eigenvalues of H . Because H
is symmetric tridiagonal, we can efficiently estimate only its
smallest eigenvalue as in [23]. We propose calculating γ(i) by
using the estimated smallest eigenvalue λ(i) of the matrix H
at the ith update as

γ(i) =

{
−βλ(i), if λ(i) < 0

0, otherwise
, (18)

where β is a scaling constant.
Before minimizing (11), we propose recursively calculating

the phase for each frame in a similar way to the LS method
in [17] by minimizing the following error function:

LRML(φl) = −
K−1∑
k=0

(
|Xk,l| cos (uk,l − ûk,l)

+ |Xk,l−1| cos (vk,l−1 − v̂k,l−1)
)
.

(19)

Algorithm 1 Proposed phase reconstruction from IF and GD
Input: Amplitude spectrogram |X|, estimated IF ṽ and GD
ũ, number of loops N1 and N2 for optimization

Output: Phase spectrogram φ̂
Calculate φ̂0 as in (20)
for l ∈ {1, . . . , L− 1} do
φ̂l ← φ̂l−1 + ṽl−1

for i ∈ {1, . . . , N1} do
Update φ̂l as in (17) replacing LML(φl) by LRML(φl)

end for
end for
for i ∈ {1, . . . , N2} do

for l ∈ {0, . . . , L− 1} do
Update φ̂l as in (17)

end for
end for

The error function (19) is equivalent to (11) removing the
terms containing vk,l. In other words, (19) doesn’t require
φ̂k,l+1, which is not available at the beginning. Let φ̂0,0 = 0;
the initial phase for the first frame can be simply calculated
from the estimated GD as

φ̂k,0 = φ̂k−1,0 − ũk−1,0. (20)

The minimization of (19) will start from the second frame, in
which the initial phase is calculated from the estimated phase
at the previous frame and IF as

φ̂l = φ̂l−1 + ṽl−1. (21)

After minimizing (19) with N1 loops, the phase estimate
is then updated by minimizing the full version of the error
function in (11) with N2 loops.

The pseudo-code for the proposed algorithm is given in
Algorithm 1. Although using iteration, this method is much
faster than the GL method as its calculation for each loop
is simple thanks to the symmetry and tridiagonality of the
Hessian matrix.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

We conducted experiments to compare two-stage phase
reconstruction algorithms, including the baseline LS method
(LS) [17], the weighted average method (AVG) [20], and the
proposed ML method with 10 loops (ML10, N1 = 5 and
N2 = 5), 20 loops (ML20, N1 = 10 and N2 = 10), and 30
loops (ML30, N1 = 10 and N2 = 20). All of these algorithms
shared the same IF and GD estimated from the amplitude by
using DNNs in the first stage. We also included the Griffin-
Lim method with 100 loops (GL100) [11] for comparison.

As all of the two-stage phase reconstruction algorithms rely
on the same result of the first stage, we compared their second
stage by measuring the mean cosine error between the IF and
GD estimated from the amplitude by using DNNs and those
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Fig. 2. Cosine errors between IF and GD calculated from reconstructed phases
and those estimated from amplitude using DNNs.

calculated from the reconstructed phases. The cosine error is
given as

ε(ỹ, ŷ) = 1− 1

KL

K−1∑
k=0

L−1∑
l=0

cos (ỹk,l − ŷk,l), (22)

whose range is [0, 2]. These second-stage errors indicate how
much information of the IF and GD estimated in the first
stage is preserved by the second stage. We also used the same
error function to calculate the errors between the IF and GD
calculated from the reconstructed phases and those calculated
from the original phase. That is to replace ỹ in (22) with
y. In other words, these errors show the overall IF and GD
accuracy of the phases estimated by the two-stage algorithms.
By comparing the second-stage and overall errors, we can
see how the result of the first stage affects the overall result.
Finally, we measured the PESQ [24] and STOI [25] of the
reconstructed signals. The higher these values, the better the
quality of the reconstructed speech.

In our implementation, the STFT was calculated by using a
Hamming window with a 32-ms length, 4-ms shift, and 512-
point DFT. For estimating the IF and GD, the same as in
[17], we used fully connected DNNs with 4 hidden layers,
each layer containing 1024 gated tanh units [26], and the last
layer containing linear units. These models were trained by the
Adam optimizer for 400 epochs. The Linear Algebra Package
(LAPACK) [27] was used to calculate the inverse and find
the smallest eigenvalue of the Hessian matrix as in [21] and
[23], respectively. The weight β of the proposed method was
empirically set to 2.4.

The data used for training were from the training set of the
TIMIT dataset [28], which contains broadband recordings of
various speakers of eight major dialects of American English.
The sampling rate is 16 kHz. The tests were performed on 100
speech samples (50 from male and 50 from female speakers)
randomly selected from the test set of the same dataset.
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Fig. 3. Cosine errors between IF and GD calculated from reconstructed
phases and those calculated from the original phase. DNN denotes IF and
GD estimated from amplitude using DNNs.

B. Experimental results

Fig. 2 depicts the errors of the second stage in the two-
stage algorithms. It can be seen that the proposed ML methods
achieved the lowest IF and GD errors in most cases. ML10
is a special case in that it yielded lower IF and higher GD
errors than ML20 and ML30. That is because, for the proposed
method, we start with zero IF error as in (21), and it seems
that 10 loops are not enough to compromise between the IF
and GD errors.

Fig. 3 illustrates the overall errors the two-stage algorithms,
where the DNN denotes the errors of the IF and GD estimated
in the first stage or, in other words, the errors of the DNNs.
Fig. 3 reveals a similar pattern as in Fig. 2 showing that
the proposed ML methods surpassed the other methods. One
difference is that the IF error of ML10 became higher than
those of ML20 and ML30, even though it was lower in Fig. 2.
We can also see that all of the errors in Fig. 2 were lower
than the corresponding errors in Fig. 3. These observations
demonstrate that the estimated IF and GD in the first stage
play an important role in the two-stage algorithms: even if the
second stage yields a low error, the overall error will be high
if the error of the first stage is high. Another remarkable point
in Fig. 3 is that the IF error of the DNN set a lower bound,
while the GD errors of ML20 and ML30 were even lower than
that of the DNN. The reason is that, by minimizing both the IF
and GD errors at the same time, the more-accurate IF helped
to correct the GD of the estimated phase.

Fig. 4 shows the overall performances of the phase recon-
struction algorithms. In comparison with the AVG method, the
ML20 and ML30 methods had similar STOI scores and higher
PESQ scores. For both indices, the proposed ML methods
were superior to the 100-loop GL method and significantly
outperformed the baseline LS method. These results show the
importance of using the amplitude weight and the advantage
of the cosine loss function over the quadratic loss function in
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Fig. 4. Performances of phase reconstruction algorithms.

the two-stage phase reconstruction algorithm.

V. CONCLUSION

In this paper, we proposed an algorithm reconstructing the
STFT phase from its estimated derivatives by using an ML
estimation with the assumption of the von Mises distribution.
The error function was minimized by using a regularized
Newton’s method. The iterations are fast because the Hes-
sian is a symmetric tridiagonal matrix. Experimental results
confirmed the superior performance of the proposed method
in comparison with other methods both in terms of IF and GD
errors and the quality of the reconstructed signals.

In the future, we will improve on the results by applying
other optimization approaches for the ML estimation. We will
also reduce the error of the estimated IF and GD by using
other neural network architectures.
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