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Abstract—In this paper, we present a novel method for
estimating the rotation angle of a circular microphone array
(CMA) when multiple sound sources do not move but the CMA
rotates instantly. We assume that the multichannel observation of
the CMA at the reference position follows the multidimensional
complex-valued Gaussian and model it. We utilize our previous
research results on the interpolation of the sound field on the
circle’s circumference. Then, using the spatial modeling and
sound field interpolation, we estimate the rotation angle of
the CMA by the maximum likelihood method. We conducted
numerical simulations that indicated the estimation accuracy of
our proposed method to be within approximately five degrees
and the algorithm to be feasible online.

I. INTRODUCTION

The position estimation of sensors such as microphones and
sound sources such as speakers in a room is an important tech-
nique for perceiving the spatial information of the room. An
approach of estimating the target’s spatial location, direction,
or speaker’s head orientation using only acoustic signals is
inexpensive and practical. For example, if the self-position
information of a smartphone can be known from acoustic
signals observed by the microphones attached to it, it will
be useful for improving the accuracy of surrounding source
localization. Also, the use of direction information enables the
users to be provided with user-specialized signal processing.
Specifically, the user’s head orientation information can be
used to estimate the user’s attention on sound source in a
room [1] and provide the user with an acoustic signal suitable
for the user, such as one that emphasizes the sound source
of the user’s their preference. This can also be applied to
hearing aids and situations in which a microphone array is
attached to a robot or human head. Moreover, some research,
such as [2], requires the angle of a microphone array for array
signal processing. In that study, the use of the sound field
interpolation method for following the change in the acoustic
transfer system owing to the microphone array’s rotation was
presented.

There are various research groups actively studying the self-
position estimation of sensors or microphone arrays. Research
on self-position estimation using a single microphone array
has been conducted. In the early work of self-localization
[3], a maximum likelihood estimator for the correct position
and orientation of the array was derived using the proposed
specialized function based on the microphone array integration
technique. In [4], to estimate the self-position of the mobile
device, an algorithm using acoustic signals coming from the

surroundings was proposed. Also, in some research on self-
position estimation, distributed multiple microphones were
used as an ad hoc array. Hennecke and Fink [5] proposed
an method of estimating the spatial position of multiple
distributed smartphones by maximum likelihood estimation
using the arrival time measurement of short pulses, considering
an application to a telephone conferencing system. Using com-
mon off-the-shelf devices such as mobile phones, Parviainen
et al. [6] presented a passive acoustic self-localization and
synchronization system. Wang et al. [7] proposed a two-stage
algorithm using the Gauss–Newton low-rank approximation
method for estimating the sensor and source joint localization
without prior knowledge, such as the sensor and source
positions. Furthermore, in research on source localization,
Felsheim et al. [8] estimated the head orientation of a single
speaker using a small-scale neural network and the speech
observed by multiple microphone arrays distributed in a room.

In this study, we focus on the rotation movement of an
equally spaced circular microphone array (CMA) as a move-
ment of sensors. We suppose a situation where a robot or user
wears a CMA on its head. Then, the CMA rotates when it turns
its head. We consider a problem to estimate the rotation angle
using acoustic signals. In this method, we utilize the previous
work by Wakabayashi et al. [2], in which the sound field on a
circumference that changes by the rotational movement of the
CMA was interpolated. We can calculate the rotation angle of
the CMA by estimating the observation signal at the reference
position by the sound field interpolation method using the
acoustic signal recorded in the array after rotation. Estimating
the rotation angle allows the head direction estimation of
a robot or a human attached with a CMA, which in turn,
enables user-specialized signal processing. In most of the
previous studies on position estimation, as described above,
source location information and the time differences between
the microphone pair were used, whereas our method does
not explicitly handle such information but expresses them by
probabilistic spatial modeling and utilizes the change in sound
field to estimate the rotation angle.

II. PREVIOUS WORK: SOUND FIELD INTERPOLATION
USING CMA

In this section, we explain the previous research [2]. Al-
though in the previous work the authors proposed a sound
field interpolation method and its application to beamforming,
we especially focus on the former topic in this paper. To
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Fig. 1: Problem setting in this study: fixed sound sources
are observed by a CMA, and the CMA rotates θ0 at time
t0 instantly. Estimate θ0 from observations in this situation.

interpolate the sound field, the authors use the spatial peri-
odicity of the sound field observed using an equally spaced
CMA. The authors considered a continuous sound field on the
circumference of the circle, z(φ) at an angle of φ ∈ [0, 2π).
In this case, they used the fact that when sensing the sound
field with the M channel CMA, the mth observed signal zm
is written as

zm = z
(

2π
m

M

)
, m = 0, . . . ,M − 1. (1)

They also utilized the fact that by shifting zm by δ samples,
zm+δ is equivalent to the sound field observed using an equally
spaced CMA rotated by θ (= 2πδ/M) rad. By the shift
theorem of the discrete Fourier transform, zm+δ is defined
as

zm+δ = z
(

2π
m

M
+ θ
)
. (2)

zm+δ can also be formulated with a linear operation as

zm+δ ≡
M−1∑
n=0

znum,n(θ). (3)

At this time, the coefficient um,n(θ) is defined as

um,n(θ)=


1+(−1)n−m

M +
sinc
(

L
2

)
cos(M+2

2M Lπ)
sinc
(

L
M

) , (M :even),

1
M +M−1

M

sinc
(

L(M−1)
2M

)
cos(M+1

2M Lπ)
sinc
(

L
M

) , (M :odd),

(4)

where L = n−m−θM/2π and j =
√
−1. Here, let U(θ) be

the M×M matrix that has um,n(θ) in the (m,n) component,
i.e., U(θ) =

(
um,n(θ)

)
, and the observation vector sensed

using the equally spaced CMA rotated by θ rad from the
reference position be

z =
[
zδ · · · zM−1+δ

]T
. (5)

Then, the sound field sensed using the CMA rotated by angle
θ is formulated with matrix operation as

z = U(θ)
[
z0 · · · zM−1

]T
. (6)

(6) shows that the observation using the CMA at the reference
position can be estimated by the observation using the CMA
after rotation and the rotation angle.

Covariance matrix 

calculation

Sound field 

interpolation

Likelihood 

calculation
Max

Fig. 2: Block diagram of rotation angle estimation, where Θ
is a set of θ, defined as Θ = {θ : −π ≤ θ < π}.

III. ROTATION ANGLE ESTIMATION BASED ON MAXIMUM
LIKELIHOOD ESTIMATION OF COMPLEX

MULTIDIMENSIONAL NORMAL DISTRIBUTION

A. Rotation and problem setting

We assume that an equally spaced CMA rotates by angle
θ0 from a reference position at time t0 instantly, as shown in
Fig. 1, and the sources are fixed. In this case, we consider
estimating the rotation angle by observation using the CMA
before and after rotation. We perform the short-time Fourier
transform (STFT) to obtain the time–frequency representation
of the time domain signal. Here, let x(f, t) and xref(f, t) be
the time–frequency domain observation vectors obtained using
the CMA with and without rotation, respectively, where f is
the frequency bin index, and t is the time frame index. We
define the observation vectors as

xref(f, t) =
[
xr1(f, t) · · · xrM (f, t)

]T
, (7)

x(f, t) =
[
x1(f, t) · · · xM (f, t)

]T
, (8)

where M is the number of microphones, and xrm(f, t) and
xm(f, t) are the mth signal observed before and after CMA
rotation, respectively.

In summary, we estimate θ0 using the observation vector
obtained using the CMA before rotation, xref(f, t), and that
after rotation, x(f, t).

B. Methodology

In this subsection, we explain this research approach. To
estimate the rotation angle, we consider taking advantage of
sound field interpolation by the existing method explained
in Section II and probabilistic modeling. We propose a
framework for rotation angle estimation as shown in Fig. 2.
First, we assume that the observation vector follows the
complex multidimensional normal distribution and model the
observation vector at the reference position, xref(f, t), as a
covariance matrix. Next, we estimate xref(f, t) by rotating
the current observation vector x(f, t) at every angle with
interpolation. Finally, we calculate the likelihood from the
estimated xref(f, t) and the modelled covariance. We obtain
the rotation angle by maximizing the likelihood as the angle
estimate. We describe the detailed explanation below.

1) Probabilistic modeling of observed signal at reference
position: A complex multidimensional normal distribution of
zero mean is used as a model of an Mch observation vector x.
At this time, the probability density function can be expressed
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as

P (x,V) =
1

πM detV
exp

(
−xHV−1x

)
, (9)

where V is the covariance matrix and ∗H is the Hermitian
transpose operation. In this study, the covariance matrix of
the observed signal at the reference position at frequency f is
defined as

Vr(f) =
1

NT

NT∑
t=1

xref(f, t)x
H
ref(f, t), (10)

where NT is the number of frames for calculating covariance,
during which we suppose that the CMA is located at the
reference position. In this way, the probabilistic modeling
of the observation vector at the reference position can be
performed.

2) Rotation angle estimation by maximum likelihood es-
timation: With the method described in Section II, we can
express the rotation of an equally spaced CMA as matrix
operations. In other words, let o(f, t) be an observation vector
before CMA rotation; then, the observation vector after the
CMA rotates by angle θ, oθ(f, t), can be expressed as

oθ(f, t) = U(θ)o(f, t). (11)

We can estimate the rotation angle from the interpolated
observation vector and the probability model of the observed
signal at the reference position designed in advance, i.e., the
covariance Vr(f), using the maximum likelihood estimation.

When the CMA rotates by angle θ0, the observation vector
at the reference position, i.e., before CMA rotation, can
be estimated by sound field interpolation along an opposite
rotation as

x̂ref(f, t) = x−θ0(f, t) = U(−θ0)x(f, t). (12)

On the basis of this idea, we can design the likelihood with
respect to angle. In this study, we employ the sum of Log-
likelihood of (9) in the time and frequency directions, using the
pre-estimated covariance Vr(f) and x−θ(f, t) (−π ≤ θ < π).

L(θ) =
∑
f,t

lnP
(
x−θ(f, t),Vr(f)

)
=
∑
f,t

[
−xH(f, t)UH(−θ)V−1

r (f)U(−θ)x(f, t)

− ln detVr(f)−M lnπ
]
. (13)

It is expected that the angle that maximizes L(θ), θmax, will
bring the interpolated observation vector x−θ(f, t) closest to
xref(f, t), resulting in it being equal to the rotation angle θ0.
In this study, we calculate the Log-likelihood value for each
angle by an exhaustive search, that is, scanning all angles θ
from −π to π. Then, we regard angle θmax as the estimated
rotation angle θ̂0.
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Fig. 3: Numerical simulation setup.

IV. EXPERIMENTAL EVALUATION

We conducted three simulation experiments to evaluate the
performance of rotation angle estimation by the proposed
method. First, we confirmed the Log-likelihood with changing
angles and frequencies. Second, we evaluated the estimation
accuracy of the rotation angle using a batch estimation scheme.
Finally, we evaluated the online estimation performance, that
is, the rotation angle was estimated frame by frame.

A. Experimental conditions

Fig. 3 shows the arrangement of the equally spaced CMA
and sources. We placed an equally spaced five-channel CMA
with a radius of 0.05 m horizontally in a 6× 4× 3.5 m room.
We placed the sources along the circumference of a circle
with a radius of 1.6 m. We set the reference position of
the CMA such that the first channel microphone was in a
positive direction on the horizontal axis. We used ten samples
(five female and five male voices) with the sampling rate of
16 kHz from the CMU ARCTIC database [9] as sources. We
positioned the sources as shown in Fig. 3 and expressed these
patterns as [θ1, · · · , θn], which means that the nth source is
located at angle θn. We performed the simulation using the
Python package pyroomacoustics [10]. The reverberation time
RT60 was approximately 100 ms. For analysis, we conducted
the STFT using a 1/2-shifted Hann window with a length of
64 ms. The length of the source samples was about 20 s. We
rotated the CMA instantly by different degrees at time 10 s. In
this experiment, to simulate such a situation, we concatenated
the two different multichannel signals observed by the CMA
with and without rotation. We used the signals before rotation
to design the probability model and the signals after rotation
to estimate the rotation angle, where we used the first 200
frames (about 6 s) of signals before rotation to calculate the
covariance matrix, that is, NT in (10) was set to 200.

B. Log-likelihood of the rotation angle estimation

To confirm the Log-likelihood values, we show the Log-
likelihood values at different angles and frequencies. Here,
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Fig. 4: Examples of Log-likelihood: (a), (c) frequency-
wise Log-likelihood and (b), (d) frequency-averaged Log-
likelihood, where the vertical red line indicates true rotation
angle. The top two are for one source located at [0°], and the
bottom two are for two sources located at [0°, 100°].

the rotation angle is 30°. Figs.4 (a) and (c) show the Log-
likelihood in the angle–frequency domain when one source and
two sources are respectively placed at 0° and [0°, 100°]. The
yellow area means that the Log-likelihood is high. The graph
shows that the yellow area is concentrated at the area of the
true rotation angle 30° in the frequency domain below about
4 kHz, but not in the high-frequency domain. We consider
that the proposed method can estimate the rotation angle
accurately in the low-frequency domain but not in the high-
frequency domain. This is because the sound field interpolation
in the high-frequency domain is inaccurate, as described in [2].
Figs. 4(b) and (d) show the frequency-averaged Log-likelihood
values. We can see that the highest peaks of the Log-likelihood
graphs point to the true rotation angles, as expected. From
these figures, we know that the Log-likelihood values were dis-
tributed in the frequency–angle domain correctly. Also, from
the findings in Figs. 4(a) and (c), to improve the estimation
performance, we used the Log-likelihood values up to 3.2 kHz
to estimate the rotation angle in the following experiment as
described in Sections IV-C and IV-D.

C. Evaluation of batch rotation angle estimation

In this evaluation, we estimated one rotation angle using
all frames of the signal after rotation; this is called batch
estimation. We calculated the Log-likelihoods averaged over
all frames (defined as t in (13)) in the observed signal
after rotation (from 10 s to 20 s). We set four patterns of
the source location and four rotation angles of −30°, 60°,
90° and 120°. We randomly selected two and three sources
from the ten source samples. To evaluate the estimation
performance, we used boxplots. Fig. 5 illustrates that the
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Fig. 5: Boxplot of angle estimation error when the number of
sources is two (left) or three (right) sources, where the number
of data for the plot is 432 (= 4 source locations × 4 angles
× 27 source combinations) or 176 (= 4 source locations × 4
angles × 11 source combinations), respectively.

estimation performance varies with changing source location
pattern and the number of sources. We suppose that increasing
the number of sources will reduce the estimation performance
by our proposed method because the covariance matrix in
the probabilistic model involves the time differences between
every microphone pair. When the CMA receives source signals
from various directions, the information about time differences
will be lost, making it difficult to model the observation.
However, Fig. 5 shows that the performance for three sources
is almost the same as that for two sources, and the error is
within 5°. We consider that the proposed method worked well
in batch estimation when the number of sources was two or
three. In future work, we will confirm the performance when
using many more sound sources.

D. Evaluation of online rotation angle estimation

In the previous experiment described in Section IV-C, we
used the observed signals after rotation (from 10 s to 20 s)
to estimate one rotation angle. In comparison with the batch
estimation, we used the Log-likelihood averaged for five
frames comprising the current frame and four past frames,
and estimated the rotation angle frame by frame in this
evaluation. We estimated the rotation angle from 6 s to 20 s,
that is, after modeling. We selected three patterns of the source
location for this experiment. Fig. 6 shows the results of online
performance. The estimation performance worsened for about
1 s just after the rotation time and then improved. We can see
that the estimation performance is not as good as the results
shown in Fig. 5, but is sufficient to apply our proposed method
to online processing.

V. CONCLUSION

In this study, we proposed a rotation angle estimation
method by observation using a CMA before and after rotation
in a situation where the CMA rotates by some angle from a
specific reference position. We modeled the observation vector
at the reference position using the multidimensional complex-
valued normal distribution. On the basis of the model, we
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Fig. 6: Online estimation result when the number of sources
is two or three, where the CMA rotates from the reference
position (0°) to 30° at time 10 s. Red lines show true angles.

designed a maximum likelihood problem of the rotation angle
using sound field interpolation and estimated the rotation angle
by an exhaustive search. Experimental results showed that the
proposed method could be used to estimate the rotation angle
within a small error range by both the batch and the online
processing. Future work includes improving the estimation
accuracy of the rotation angle, introducing a faster algorithm
of angle search without an exhaustive search, and confirming
the performance in a highly reverberant real environment.
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