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Abstract—Automatic speech recognition (ASR) for under-
represented named-entity (UR-NE) is challenging due to such
named-entities (NE) have insufficient instances and poor con-
textual coverage in the training data to learn reliable estimates
and representations1. In this paper, we propose approaches to
enriching UR-NEs to improve speech recognition performance.
Specifically, our first priority is to ensure those UR-NEs to appear
in the word lattice if there is any. To this end, we employ
class-based language model (LM) philosophy, making exemplar
utterances for those UR-NEs according to their classes (e.g.
location, person, organization, etc.), ending up with an improved
LM that boosts the UR-NE occurrence in the word lattice.
Then we boost the recognition performance through lattice
rescoring methods. We first enrich the representations of UR-
NEs in a pretrained recurrent neural network LM (RNNLM) by
borrowing the embedding representations of the rich-represented
NEs (RR-NEs), yielding the lattices that statistically favor the
UR-NEs. Finally, we directly boost the likelihood scores of the
utterances containing UR-NEs and gain further performance
improvement.

I. INTRODUCTION

With the surge of voice-enabled applications in smart de-
vices, the correct recognition of under-represented named-
entity (UR-NE) became vital, especially for the downstream
applications that employ ASR outputs [1], [2], [3], [4]. Since
the UR-NEs might constitute the essential details of an utter-
ance such as person, location, and organization names.

However, speech recognition for UR-NE words is challeng-
ing. This is because those UR-NEs rarely occur in the training
corpus, and they also lack of contextual information, resulting
in weaker acoustic and language models on such NEs.

To boost the recognition performance of those UR-NEs, our
first priority is to ensure that they appear in a decoded lattice.
Then we propose a series of approaches to extract the final
one-best hypothesis that contains UR-NEs if there is any.

Specifically, we propose a simplified class-based language
modeling framework that is aimed to boost the n-gram count
for those UR-NEs under word-based n-gram langauge model
(LM) context. In practice, we first define NE class, but we
actually avoid building NE-class-based n-gram LM, since it
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1In this paper, UR-NE refers to the named-entity (NE) words that have
low-frequency count, say, the count is in [1, 9] in this work, or do not appear
in the training data at all, i.e. the count is 0.

is not the NE-class-based n-gram LM, but the word-based n-
gram LM instead, that is employable to generate word lattice.
Besides, class-based to word-based n-gram LM expansion is
not a trivial work. It entails big memory and post-pruning on
the generated word-based n-gram LM. As a result, we propose
to generate exemplar utterances for the UR-NEs to boost word-
based n-gram LM directly according to the defined NE classes.

We found that the UR-NE occurrence in the decoded
lattice significantly improved with the help of UR-NE en-
riched n-gram LM. After that, we first rescore lattice by a
improved UR-NE-enriched recurrent neural language model
(RNNLM) [5] that has proved its effectiveness for UR-NEs
recognition. lastly, we directly boost the utterances that contain
UR-NEs in lattices. The combination of these approaches
significantly improves the recognition performance of UR-NEs

The paper is organized as follows. Section II briefs the prior
related work. In Section III, we are briefing data specification
for the experiment. We then detail the proposed approaches to
enriching representations for UR-NEs in Section IV. Section V
is for our experimental setup and results. We draw conclusions
in Section VI.

II. RELATED WORK

In ASR community, a common practice is “ the more
data, the better”. However, for those UR-NEs, even huge
data cannot guarantee they are covered or sufficiently covered
that leads to insufficient contextual information. Prior work
is mostly focused on out-of-vocabulary (OOV) words [6],
[7], [8], [9]. However, performance would be sub-optimal by
simply adding those OOV words to the ASR dictionary. This
is because those OOV words have no context information,
which is essential to the decode utterances containing OOV
words. some people propose class-based LM [10], [11], [12],
[13], [14], [15], among them [10], [11], [12], [13] are class-
based ngram LM that is troublesome, and [14], [15] these
can reduce the cost but they are weaker performance than
word-based RNNLM. Another effort direction on rare word
recognition is to use diversified LMs [5], [16], [17], [18],
[19], to rescore lattice/N-best hypotheses, hopefully to achieve
improved results. For example, [17], [18], [19] proposed to
employ hybrid word/subword tokens as input and output
units of neural LMs. On the other hand, [5], [16] proposed
to augment the representations of rare words in embedding

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1021978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



matrices of pretrained word-level neural LM. The success of
the above-mentioned methods relies on a presumption that
those rare words do appear in the lattice which are often
generated with the help of a cheaper N-gram LM. However,
such assumption is not always guaranteed.

In this work, to conduct Singapore street NE recognition,
we do not rely on much extra text or acoustic data. Instead, we
fully exploit our training data to discover the pattern of those
utterances containing NEs that are rich-represented (RR). We
employ those RR-NE utterances as pool to generate exemplar
utterances for those UR-NEs according to the NE category
correspondence. We demonstrate such an N-gram LM boosted
with the exemplar utterances can be significantly helpful on the
UR-NE occurrence in the resulting lattice. We further apply
rescoring methods on the boosted lattice to achieve improved
results.

III. DATA SPECIFICATION
To train the ASR, we utilize National Speech Corpus

(NSC) [20] developed to advance the english speech related
technologies in Singapore. The NSC consists of three main
parts: 1) read speech using phonetically balanced scripts, 2)
read speech featuring words pertinent to the Singapore context,
containing a lot of NEs, and 3) conversational speech. To
evaluate the proposed approaches, we use the subset of the
third part (NSC-part3) as training data and a small portion of
the second part (NSC-part2) as an evaluations set. In addition,
we also use SG-streets2 data set as an additional evaluation
set. The SG-streets data set consists of six recordings where
Singaporean students read English passages containing Sin-
gapore street NEs. The detailed data description is shown in
Table I. From Table I, we can see the two test sets contain a lot
of NEs. This is particularly true for the NSC-part2 test set. It
contains a lot of sentences with NEs, for instance, utterances
like “please look for Makaila when you reach
Kallang wave mall”. Besides, the OOV rate related to
the training data is also quite high for both test sets. This
is because the training data is conversational data, and the
vocabulary is usually small (∼20k in our case).

TABLE I: The overall data set specification

Category Train Test
NSC-part2 SG-streets

Speakers 482 76 6
Duration (hrs) 100 1.6 1.0
Utterances 137,058 1,176 517
NE rate (%) 0.62 19.33 7.82
OOV rate (%) - 12.93 8.25

IV. APPROACHES TO ENRICHING UR-NE

A. Enrich UR-NEs with exemplar utterance for Language
Modeling

As mentioned, UR-NEs refer to the NEs whose count falls
in, say, [0, 9], in the training data. Here, zero count means

2https://github.com/khassanoff/SG streets
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Fig. 1: Effectiveness of using exemplar utterances on the UR-
NE occurrence in lattices. Here, UR-NE count falls in [0, 10)
in training data, and all test NEs are included in ASR lexicon
for the baseline which corresponds to 0 exemplar utterances.

out-of-vocabulary words. As indicated in Table I, the two test
sets not only contain high NE rate but also contain high OOV
rate; and most of the OOV words belong to NEs. Specifically,
the NEs mainly falls in 6 class, that is, location, person,
country, company, organization, and city. Linguistically, the
NEs are mostly from Mandarin, Cantonese, Hokkien, and
Malay languages.

Simply adding all those UR-NEs into the ASR lexicon
is a natural choice, however, recognition improvement won’t
be fully unleashed. This is because the UR-NEs still lack
of linguistic context that is important for LM. To address
this problem, we propose a simplified class-based LM that
is to generate exemplar utterances for them and merge such
exemplar utterances to boost the language model.

In practice, we manually classify the NEs in our training
data into two parts according to their count. We name those
NEs with higher count (say, count in [10,+∞)) as RR-NE.
Simultaneously, we label the NEs with 6 class respectively.
We then build hash tables for the NEs and correspond-
ing exemplar utterances that are randomly selected from the
training transcript.

Given those UR-NEs, we label them with one of the 6
classes as mentioned above, we then search the class by
looking-up the hash tables we built, yielding exemplar
utterances for those RR-NEs. By simply substitute RR-NEs
with the UR-NEs, we obtain corresponding exemplar utter-
ances for each of UR-NEs. Finally, we use this class-based
N-gram LM to decode.

Figure 1 illustrates the effectiveness of using exemplar
utterance on UR-NE occurrence in the lattices for the 2 test
sets in Table I. As is clearly shown in Figure 1, even with 5
exemplar utterances for UR-NE can lead to significant UR-NE
occurrence in the lattices.

Meanwhile, we are also curious about on which part of
UR-NE the exemplar method has most impact. To do this,
we divide the UR-NEs into several groups according to their
counts in training data. Specifically, the count of the overall
NEs we are considering lies in [0, 9], we divide them into 9
groups, we then analyze the NE lattice occurrence for each
sub-group accumulatively, that is, each sub-group [0,b] means
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Fig. 2: NE occurrence in lattices versus the upperbound count
of UR-NE. Here the denominator is the number of NEs whose
frequency counts are in [0, 9].

we consider the NEs with count in the corresponding level,
and b ∈ [0, 9]. Figure 2 plots the NE lattice occurrence versus
NE counts in training data. As is observed from Figure 2,
the exemplar method only has significant impact on those
extremely under-represented NEs in training data, specifically,
whose count lies in [0,1], namely, out-of-vocabulary and single
count NEs. Thirdly, We also analyzed the number of RR-NEs
and the number of utterances per RR-NEs and find that this
is not a very important parameter to care.

Based on the above analysis on the proposed exemplar utter-
ances method, we use following settings for the experiments in
Section V. We randomly select 20 RR-NEs from the training
data, After that, we only boost those UR-NEs whose counts are
in [0, 1] in training data, and for each UR-NE, we randomly
generate 10 exemplar utterances from the utterance pool.

B. Enrich UR-NE for lattice rescoring

1) UR-NE-enriched RNNLM lattice rescoring: RNNLM
lattice rescoring is an effective approach to boosting ASR
performance as a post-processing strategy [19], [21]. To extract
better results from lattice in Section IV-A, we propose an
improved RNNLM that enrich the representations for those
UR-NEs following the prior work [5]. Specifically, we enrich
the embedding vectors of UR-NEs in space using embedding
vectors of the RR-NEs that are corresponding set of similar
class words. while we keep the parameters of pre-trained
RNNLM unchanged. The formula is as follows:

êu =
eu +

∑
ec∈Cr

mcec

|Cr|+ 1
(1)

where Cr is the overall embedding vector of RR-NEs set, eu
is UR-NE embedding and êu is the enriched representation of
eu. mc is a metric to weigh the relevance of RR-NEs to the
corresponding UR-NE. In this paper, mc is 0.7 if two NEs are
in the same class, and 0.3 for the other case.

For the proposed method (for simplicity from now on, we
also name it as RNNLM-enriched method), the success
of Equation 1 is dependent on 2 factors, that is, how many
RR-NEs and UR-NEs are involved. Besides, we also prefer
the overall WER and NE-WER improvement is positively
correlated. Figure 3 shows both NE-WER and WER curves
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Fig. 3: UR-NE WER (%) and overall WER (%) versus
different UR-NEs that are enriched with Equation 1.

versus UR-NEs that are defined by their count in training
data, with different RR-NE embeddings that are employed in
Equation 1. From Figure 3, we see that by using very small
RR-NE embeddings (5 RR-NEs) to enrich those UR-NEs
whose count is ∼7, both NE-WER and WER are consistently
improved. We note that the baselines here are the corre-
sponding normal RNNLM resoring results. More importantly,
the definitions of UR-NEs and RR-NEs here are separated
with corresponding definitions in Section IV-A, that is, both
methods can choose completely different UR-NEs and RR-
NEs to enrich. In Section V, we always choose 5 RR-NE
embeddings to enrich those UR-NEs whose count in [0,7].

2) UR-NE-biased lattice rescoring: Even with the rescored
lattice by the RNNLM-enriched method, it cannot be guar-
anteed the UR-NEs to appear in the 1-best hypothesis of the
utterances in the end. This is because the hypothesis containing
UR-NEs might have too low likelihood scores. Therefore,
we propose a UR-NE-biased lattice rescoring method (For
simplicity, we also call it as Lattice boosting method)
to boost the hypothesis containing UR-NEs.

Practically, we are doing what follows in order. We treat all
UR-NEs as keywords. We build a trivial finite-state-transducer
(FST) [22], [23] for the entire UR-NE set. For a given word
lattice, we first perform keyword search [24] by composing the
UR-NE FST with the transformed lattice. This determines if
any UR-NE exists and corresponding location in the lattice. If
there is UR-NE, we extract the best path/hypothesis containing
the UR-NE. It is simply a forward-backward path search
operation on the lattice.
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TABLE II: The overall WERs (%) and NE-WERs (%) with the proposed methods. The NE-WER is computed only for the
NEs whose count is in [0, 9]. Here, zero mean the NEs are absent from the training data, while [1,9] refers to the rare case.
“Lattice boosting” means we perform UR-NE-biased lattice rescoring in Section IV-B2.

ID System
NSC-part2 SG-streets

WER (%) NE-WER (%) WER (%) NE-WER (%)
Rare Absent ALL Rare Absent ALL

S1 Baseline 30.14 30.81 46.05 42.37 22.12 18.57 58.99 45.45
S2 S1 + Exemplar utterance 27.35 28.11 36.43 34.42 19.85 15.71 56.83 43.06
S3 S2 + RNNLM 26.80 28.11 35.22 33.51 19.41 18.57 55.40 43.06
S4 S2 + RNNLM-enriched 26.67 26.49 32.65 31.16 19.35 17.14 50.36 39.23
S5 S4 + Lattice boosting 29.88 11.89 20.79 18.64 23.04 7.14 30.94 22.97
S6 S1 + RNNLM 28.59 30.27 45.19 41.59 20.87 21.43 58.27 45.93
S7 S1 + RNNLM-enriched 27.62 24.86 33.68 31.55 20.47 14.29 51.08 38.76
S8 S7 + Lattice boosting 29.69 12.97 23.54 20.99 22.25 4.29 33.81 23.92

V. EXPERIMENTAL SETUP AND RESULTS

Experiments are conducted with Kaldi toolkit 3. The
acoustic models are the factorized time-delay neural network
(TDNN-F) [25], trained with lattice-free maximum mutual
information (LF-MMI) [26] criterion. All are a 6-layer convo-
lutional neural network topped with 11-layer TDNN-F network
with each layer having 1536 input neurons and 256 bottleneck
output neurons respectively. The ASR lexicon is position-
dependent grapheme lexicon [27], and the vocabulary is 21.7k.
Our grapheme lexicon can make comparable results with the
conventional phonetic lexicon on those in-vocabulary words,
while it yields better results on the NE recognition. To realize
OOV-free on either test set, we collect ∼3000 NEs from
website4, which covers the NE-related OOV words on either
test set. We use 4-gram LM trained with training transcript to
perform first-pass decoding to generate lattice. After that, we
employ RNNLM [19] to conduct lattice rescoring. To achieve
a desired performance, we also employ both speed perturba-
tion [28], [29], as well as SpecAugment [30] simultaneously.

Table II presents the overall results with (S2-S5) or without
(S6-S8) exemplar method in Section IV-A employed. From
Table II, exemplar method achieves better results on the final
UR-NE recognition, comparing S5 with S8. On NSC-part2, the
overall NE-WERs are 18.64% versus 20.99%; the NE-WERs
are 22.97% versus 23.92% on SG-streets. It is particularly
effective on the NEs that are absent in the training data,
yielding consistent improved results on either test set. One
point worth a notice is that it seems the exemplar method is
not perfectly coordinated with the RNNLM-enriched method.
Comparing S3 with S6, exemplar method yields obvious
better results, however, after the RNNLM-enriched method is
applied, the benefit is significantly reduced. As is seen from S4
versus S7, exemplar method even yields worse results (17.14%
versus 14.29%) on SG-streets “Rare” case. We conjecture it
diverts the embedding eu in Equation 1. Besides, taking a
closer look into the data, we found the sentences of the SG-
streets have few repetitive patterns, and they are much longer.

3https://github.com/kaldi-asr/kaldi
4https://geographic.org/streetview/singapore

For the NSC-part2, the patterns of the utterances containing
NEs are rather restricted and repetitive, which favors for the
exemplar method, since it is much easier to capture the limited
context.

Table II also shows the effectiveness of the RNNLM-
enriched method on the overall WER and NE-WER improve-
ment, with or without exemplar utterance method, as can be
clearly observed in S4 and S7. Additionally, by lattice boosting
method, we can obtain remarkable NE-WER reduction on both
data sets. For instance, the NE-WER is down to 22.97% from
39.23% in exemplar case, and 23.92% from 38.76% without
exemplar method on SG-streets test set. However, the overall
WERs are slightly worsen, as is seen when S4 versus S5, and
S7 versus S8 are respectively compared.

Finally in Table II as mentioned, we observe RNNLM-
enriched method is not well coordinated with the exemplar
method. We guess this is because the exemplar utterances
might divert the embedding estimate for the NR-NEs in Equa-
tion 1. To verify our conjecture, we decouple the two methods,
that is, we use exemplar method to generate lattice, but stick
with using original training transcript to train RNNLM and let
the afterwards RNNLM-enriched method not be affected by
the exemplar method. Table III reports the NE-WER results.
Compared with results in Table II, we notice that we make
the best NE-WER results on either test sets.

TABLE III: NE-WER results of Decoupled exemplar and
RNNLM-enriched methods. S9 stands for lattice rescoring that
corresponds to S3 and S6 in Table II, S10 refers to RNNLM-
enriched method, corresponding to S4 and S7 in Table II, S11
refers to lattice-boosting method, whose counterpart is S5 and
S8 in Table II.

ID
NE-WER (%)

NSC-part2 SG-streets
Rare Absent ALL Rare Absent ALL

S9 27.03 36.60 34.29 15.71 52.52 40.19
S10 24.32 32.30 30.38 15.71 47.48 36.84
S11 12.43 20.62 18.64 4.29 30.94 22.01
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VI. CONCLUSIONS
In this paper, we proposed a bunch of approaches to

enrich under-represented name-entities, yielding better name-
entity recognition performance. To realize this, our first ob-
jective is to guarantee the occurrence of the under-represented
name-entity is improved in decoded lattice. Consequently we
introduce an exemplar utterance generation method, yield-
ing an improved n-gram LM that favors for the under-
represented name-entities. Though the exemplar method is
rather heuristic, we demonstrated its effectiveness. To achieve
better results on the improved lattice, we then employed
two lattice rescoring methods. One is the RNNLM-enriched
lattice rescoring method, by enriching embedding of the under-
represented name-entity with corresponding embeddings of
rich-represented name-entities. We found it is very effective
to boost the overall ASR performance, that is, with or without
name-entity recognition considered. Another method is we
directly favor the utterance that contains under-represented
name-entities from lattice. With such a method, we obtain
slightly degraded ASR results, but significantly better results
on the under-represented name-entity recognition.
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