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Abstract— Ensemble involves combining the outputs of 

multiple models to increase performance. This technique has 

enjoyed great success across many fields in machine learning. This 

study focuses on a novel approach to increase performance of a 

model without any increase in number of parameters. The 

proposed approach involves training a model that can have 

different variations that perform well and different enough for 

ensemble. The variations are created by changing the order of the 

layers of a machine learning model. Moreover, this method can be 

combined with existing ensemble technique to further improve the 

performance.  

 The task chosen for evaluating the performance is machine 

translation with Transformer, as Transformer is the current 

state-of-the-art model for this task as well as many natural 

language processing tasks. The IWSLT 2014 German to English 

and French to English datasets see an increase of at least 0.7 

BLEU score over single model baseline with the same model size. 

When combined with multiple model ensemble, minimum 

increase of 0.3 BLEU is observed with no increase in parameters. 

I. INTRODUCTION 

The past decade has seen neural networks achieving the state 

of the art across many machine learning tasks. Popular tasks 

such as image classification in the field of computer vision [1], 

and translation in natural language processing [2] have been 

dominated by neural network-based methods. A common 

technique to boost the performance of neural network is 

ensemble. Ensemble has seen great success in high profile 

competitions, such as Kaggle [3]. Ensemble works by 

combining the output of multiple models. The most common 

methods involve averaging the output of different models or 

deciding on the output with a vote. This generally offers better 

performance over the uncombined outputs, as long as there is 

suffice difference between the outputs of each model. During 

training, neural network will converge to one of the many local 

minima. These different local minima result in different 

outputs, which makes ensemble of independently trained 

models an effective method to increase performance [4]. 

Since the common ensemble technique relies on having 

multiple independently trained models, this results in multiple 

times the number of parameters, which in turn multiples the 

training time. These training cost can be quite costly for large 

models, as state of the art models requires multiple expensive 

graphic processing unit (GPU) that consumes hundreds of 

watts per hour running in parallel [5]. Increase in number of 

parameters also results in increase in memory usage, and may 

be of concern for low-powered devices. 

Some previous work to address the cost associated with 

training multiple models for ensemble focused on extracting 

multiple models from a single training run. These past works 

often involved the use of cyclic learning rate schedule. Cyclic 

learning rate schedule, such as snapshot ensemble [3], involved 

repeating cycles of resetting to initial learning rate and quickly 

dropping to a low value. One checkpoint was saved at the end 

of each cycle, which resulted in several models equaling the 

number of cycles. These models were used for ensemble. 

The core concept for snapshot ensemble and similar methods 

is to take multiple snapshots during one training run. These 

snapshots are sub-optimal models compared to model trained 

with standard learning rate schedule, but the ensemble of these 

sub-optimal models can perform better than the standard 

approach. Later work improves on this method by using 

different cyclic learning rate schedules. Fast Geometric 

Ensembling (FGE) was proposed after discovery of 

connections between local minimum [6]. The ensemble method 

was further improved by Stochastic Weight Averaging (SWA) 

by using weight averaging as the ensemble method [7]. 

These cyclic learning rate schedule methods differ from our 

proposed method in that they require obtaining multiple models 

prior to ensemble, which multiples the number of parameters. 

While, our method need only one model, which is used to 

create variations. In addition, our method can be applied along 

with other ensemble techniques, which further improves the 

performance under the same number of parameters. This will 

be detailed in the experiment section. 

This study proposed a method for Transformer [8] to 

ensemble without increasing parameter. The experiment was 

carried out on machine translation, a task in which Transformer 

is the state-of-the-art method [9, 10], and other tasks [11, 12]. 

The main contributions of this study are as follows: 

1) Improve the model performance with the same number of 

parameters for machine translation with Transformer. 

2) Able to create exponential amount of variations of one 

model. 

3) The output of each variation is different enough from each 

other to increase performance with ensemble. 

4) Can be combined with other ensemble method to further 

increase performance. 

5) The proposed method is simple to implement for both 

training and evaluation. 
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II. METHODS 

The goal is to create a form of ensemble without requiring 

any additional parameters. To achieve this, a method of 

creating variations of a model is needed. The proposed method 

has taken inspiration from the recent success of applying 

stochastic depth training to the Transformer. 

A. Inspiration 

Stochastic depth training was proposed to assist in training 

Residual Network (ResNet) [13]. As deep ResNet can suffer 

from vanishing gradient and slow training time, by randomly 

dropping out layers during training, stochastic depth training 

acts as regularization for very deep ResNet. 

Recently, deep Transformer model for speech recognition 

utilize this method as regularization as well [14, 15]. Other 

research has applied stochastic depth training or similar 

methods for different uses, such as research into extracting 

small high-quality model for a large model trained with 

stochastic depth training [15]. This is achieved by training a 

Transformer with dropout applied to the layers. After training, 

a smaller model can be extracted from the full model by 

keeping a subset of layers. Depth-adaptive Transformer is a 

Transformer which can learn to use different number of 

computational steps for different inputs [16]. This is done by 

having the Transformer select a subset of layers to run 

depending on the input. The training method for depth-adaptive 

Transformer can be seen as a heavily modified form of 

stochastic depth training. 

The above instance of applying stochastic depth training to 

Transformer shows the Transformer can be resilient to layer 

manipulation during training and evaluation. As such the 

manipulation of layers is used to create variations for ensemble.   

B. Proposed Methods 

The core idea is to create a model that can manipulate its 

layers to create variations with different outputs. These 

variations of a model can be ensembled to produce better result. 

Since each layer processes the input information and output 

processed information, switch the order of layers is essentially 

changing the order of how the information is processed. The 

idea of changing order of information processing to create 

variations is partially inspired by the decoding method in 

statistical phrase-based machine translation. The decoding in 

phrase-based translation forms different hypotheses by 

translating different parts of a sentence in different orders, then 

selects the best hypothesis by beam search [17]. Using an 

example of translating “How is the weather today?”, one 

hypothesis may start by translating “how is”, then “the 

weather”, and finally “toady”. Another hypothesis may start 

with “today”, then “how is”, and “weather”. Both hypotheses 

may result in good quality translations, despite that they do not 

process the information in the same order. 

The take away is by processing the information in a different 

order, the output can be different, and ensemble of different 

outputs can lead to better performance. To change the order of 

information processing, the order of layer of a model is 

modified. As such, different permutations of layer will serve as 

variations. Using alphabets to denote each layer, a 4-layered 

model could have order of (A, B, C, D) for one variation and 

(B, C, D, A) for another variation. 

 The method to generate variations is to permute the layers. 

To provide structured permutation, the layers of a model is 

divided into pools. Permutation is done to the pools of layers. 

Using a 4-layered model as an example. The 4 layers could be 

divided into 2 pools with size 2 each. In which case, the first 

two layers can be shuffled and last two layers can be shuffled, 

but not between the two pools. Figure 2 lists out some valid and 

invalid permutations of layers for this example. For this work, 

the pools are always contiguous, therefore, the pools are 

described by their size. For example, a pool size of (2, 2) 

describes two pools with size two each. While, pool size of (1, 

3, 1) refers to a model with a pool of size 1, followed by a pool 

of size 3, then a pool of size 1. 

For the model to change the layer order and produce a valid 

result, the training process needs to be modified to incorporate 

switching the layer order. Two methods of incorporating layer 

permutation into training are devised: set order and random 

order. Both methods involve switching the layer order at each 

update step during training. 

For set order, a set of predetermined layer orders are decided 

on. During training, a layer order is randomly selected from the 

set for each step. For example, a four-layered model might be 

using layer order (A, B, C, D) and (A, C, B, D). At each step of 

the training process, one of these two-layer order is randomly 

selected to run the model. Algorithm 1 shows how the layer 

stack of a model is modified for set order training. This means 

for each update step, the same set of parameters are trained in 

a different configuration. This is similar to train multiple 

models with weight tying between different layers. Since all 

 

Fig. 1   Examples of different variations of a 4-layer model. 

 

Fig. 2   Examples valid and invalid layer permutation for a 4-layer 

model with pool size (2, 2). 
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the parameters are shared between the variations, no increase 

in parameter is needed. 

Algorithm 1: One run of the layers for set order 

   Input: input of the layers: x, set of layer order: O 

   Output: output of the layers 

1 o ← randomly select one order from O 

2 for 𝒊 ∈ o do 

3      𝒙 ← 𝐋𝐚𝐲𝐞𝐫𝒊(𝒙) 

4 end 

5 return 𝒙 

For random order, a random layer order is selected from all 

valid permutations of layers for each step of training. With the 

pool size dictating what constitute valid permutations. 

Algorithm 2 shows how the layer stack of a model is modified 

for random order training. An implication of using all valid 

permutations is an exponential amount of variations which 

could be trained together. For a six-layered model with pool 

size (6), there could be 720 permutations/variations. With the 

encoder-decoder architecture used in machine translation, if 

both encoder and decoder have 6 layers with pool size (6), a 

total of 518,400 variations are possible. This setup is used in 

the experiment, producing model that has 518,400 well 

performing variations, that can be ensembled for better 

performance. 

Algorithm 2: One run of the layers for random order 

     Input: input of the layers: x, list of layer pool size: S 

     Output: output of the layers 

  1  𝑖 ← 0 

  2  L ← list of all layers index 

  3  for 𝑠 ∈ 𝑆  do 

  4       RandPerm(L(i...i+s-1)) 

  5       𝑖 ← 𝑖 + 𝑠 

  6  end 

  7  for 𝑗 ∈ L do 

  8       𝑥 ← Layer𝑗(𝑥) 

  9  end 

10  return 𝑥 

      Function RandPerm(list): 
             return in-place random permutation of list 

C. Evaluation 

After training, the model is evaluated with random set of 

valid variations, then the outputs are ensembled. For set order 

training, valid variations are the set of layer orders used for 

training. For random order training, valid variations are any 

valid layer permutation as dictated by the pool size. The 

outputs of the models can be ensembled by any ensemble 

technique. The method of ensemble for the experiment is 

average ensemble. 

III. EXPERIMENTS 

The task used for evaluating the model was sentence-level 

translation. The baseline of single model Transformer was 

compared with a single model with ensemble of 5 variations. 

In addition, ensemble of 3 and 5 baselines was compared with 

ensemble of 3 and 5 models of the proposed method. The 

datasets used were the IWSLT 2014 German to English and 

French to English [18]. BLEU score [19] was used for 

evaluating the quality of translation. All experiments were 

conducted on a single Nvidia RTX 2080 Ti. The baseline was 

provided by Fairseq framework [20], and the model was 

implemented with the framework as well. 

A. Experimental Setup 

The datasets were cleaned and tokenized with Moses [21]. 

Byte pair encoding (BPE) [22] was used to split the vocabulary 

into subword units of the datasets. For both datasets, a total of 

10k subword units was used. Label smoothing [23] of 0.1 was 

used. All models were trained with Adam [24] as optimizer 

with β_1=0.9, β_2=0.98, and ϵ=〖10〗^(-9). The learning rate 

schedule was the same as the original Transformer [8] with 

4000 step of warmup, and learning rate of 5×〖10〗^(-4). 

Dropout [25] of 0.3 was applied. All models in the experiments 

were the Transformer [8] with 6 layers for encoder, 6 layers for 

decoder, model dimension of 512, 4 heads for multi-head 

attention, and 1024 dimension for inner dimension of position-

wise feed-forward network. The data were batched with a 

maximum token count of 4096. This is the same setting as 

recommended by Fairseq [20] for the dataset. For generation of 

translated sentence, beam search of beam size 5 with length 

penalty of 0.6 was used. All ensembles were done by averaging 

the model output probability distribution during generation. 

B. Experimental Results 

This section compared the baseline of standard Transformer 

with the proposed method. The proposed method used a pool 

size of (6) for encoder and decoder, and random order training. 

After training, the proposed method randomly selected 5 

variations for ensemble. All reported result in this section was 

repeated with 5 trials. The mean and standard deviation were 

reported. 

Table 1   Results of single model baseline and proposed method. 

IWSLT 2014 German to English 

Model BLEU score Parameters 

Baseline 

Proposed Method 
34.63 (σ: 0.109) 

35.42 (σ: 0.168) 

39M 

39M 

IWSLT 2014 French to English 

Model BLEU score Parameters 

Baseline 

Proposed Method 

39.75 (σ: 0.083) 

40.46 (σ: 0.124) 

40M 

40M 

For both datasets, the proposed method outperformed the 

baseline. From Table 1, the IWSLT 2014 German to English 

saw an improvement of 0.79 BLEU score, and IWSLT 2014 

French to English saw an improvement of 0.71 BLEU score 

with the same number of parameters used by the baseline and 

the proposed method. 

To show the performance of each variation, the average of 

the 25 randomly selected variations across 5 trials were 

reported in Table 2. This shows the training method did not 

negatively impact the performance of the model. 

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1028



Table 2   Results of variations from the proposed method. 

IWSLT 2014 German to English 

Model BLEU score Parameters 

Baseline 

Single Variation 

34.63 (σ: 0.109) 

34.69 (σ: 0.134) 

39M 

39M 

IWSLT 2014 French to English 

Model BLEU score Parameters 

Baseline 

Single Variation 
39.75 (σ: 0.083) 

39.77 (σ: 0.124) 

40M 

40M 

To demonstrate the proposed method can be combined with 

other ensemble techniques, the experiments combined average 

ensemble of multiple models with the proposed method. The 

baseline was the average ensemble of multiple models, while 

the proposed method was the ensemble of multiple variations 

across multiple models. Results of ensemble of 3 model and 

ensemble of 5 models were reported. For the proposed method, 

5 variations were randomly selected from each model. In the 

ensemble of 3 models, this resulted in a total of 15 variations, 

and 25 variations for ensemble of 5 models. 

Table 3: Results of multiple model ensemble of baseline andproposed method.  

IWSLT 2014 German to English 

Model BLEU score Parameters 

3 Model Baseline 

3 Model Proposed Method 

36.43  

36.76  

39M × 3 

39M × 3 

5 Model Baseline 

5 Model Proposed Method 

36.82 

37.12 
39M × 5 

39M × 5 

IWSLT 2014 French to English 

Model BLEU score Parameters 

3 Model Baseline 

3 Model Proposed Method 

40.91  

41.24  
40M × 3 

40M × 3 

5 Model Baseline 

5 Model Proposed Method 

41.36 

41.70 

40M × 5 

40M × 5 

From Table 3, the proposed method showed improvements 

of at least 0.3 BLEU score across 3 model, and 5 model 

ensemble on both datasets, with no increase in parameter over 

baseline. As reference, a 66% increase of parameters between 

ensemble of 3 baseline model and 5 baseline models resulted 

in an improvement of 0.39 BLEU score for German to English, 

and 0.45 BLEU score for French to English. 

Table 4: Results of hyperparameter selection.  

IWSLT 2014 German to English 

Training Pool Size 1 Model 5 Model 

set order 

random order 
set order 

random order 

(1, 4, 1) 

(1, 4, 1) 
(6) 

(6) 

35:07 

35.15 
35.27 

35.42 

36.86 

37.12 
36.94 

36.52 

IWSLT 2014 French to English 

Training Pool Size 1 Model 5 Model 

random order 

random order 

(1, 4, 1) 

(6) 

40.11 

40.46 

41.70 

41.42 

The proposed method introduced two types of 

hyperparameters: training method and pool size. Both training 

methods and different pool sizes were tested on both datasets 

in Table 4. The result showed random order training and pool 

size of (6) performed the best for single model, while random 

order training with pool size of (1, 4, 1) performed the best for 

multiple model ensemble. In both cases, the random order 

training performed the best. For single model scenario, a large 

pool size was better. For multiple model ensemble, having 

restriction in permutation can help. 

There were several neural machine translation approaches, 

and some of them which also used IWSLT 2014 database were 

selected for comparison, as shown in Table 5. These works 

differed in many aspects, such as ensemble [26], training step 

design [27], data augmentation [28], and model architecture 

design [29]. Among them, data augmentation has been the 

mainstream improvement method in recent years. It can be 

found from the table that the performance of our proposed 

method is similar to that of the existing methods, but for the 

method of ensemble, our method can improve the performance 

a lot. And it can be easily and universally applied to the existing 

models and other ensemble design. 

Table 5: Results of the existing methods on IWSLT’14 (De-En)  

Methods (Ensemble) BLEU score 

ConvS2S Ensemble[26] 34.61 

Ours 37.12 

Methods (Single model) BLEU score 

Tied-Transformer[27] 35.52 

Soft contextual DA[28] 35.78 

BERT-fused[29] 36.11 

Ours 35.42 

IV. CONCLUSIONS 

Ensemble is a powerful machine learning tool. Our proposed 

method focuses on creating variations from a single model for 

ensemble. Two training method and one way to describe how 

to permute the layers are proposed. The proposed method 

results in better performance with the same number of 

parameters. In addition, our method can be combined with 

existing ensemble method to further improve performance. For 

single model ensemble, a large pool size is beneficial, while 

restriction for permutation is better for multiple model 

ensemble. Random order training performs better in both cases. 

Experiments shows improvements of at least 0.7 BLEU 

score over the baseline with no increase in parameters. When 

combined with multiple model ensemble, the proposed method 

beats the baseline by at least 0.3 BLEU score with the same 

number of parameters. As reference, it requires 66% increase 

in parameters to increase BLEU score by 0.39 on IWSLT 2014 

German to English between 3 model ensemble and 5 model 

ensemble. And the proposed method can perform well 

comparing with existing studies. As state-of-the-art models are 

on the scale that requires hundreds of GPUs to train, which is 

outside the reach of a single GPU. Future works on applying 

proposed method to training large models efficiently is needed. 
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