
Ensemble of One Model: Creating Model Variations

for Transformer with Layer Permutation

Andrew Liaw1, Jia-Hao Hsu2 and Chung-Hsien Wu3
Department of Computer Science and Information Engineering,

National Cheng Kung University, Tainan, TAIWAN

E-mail: 1yhandrew.liaw@hotmail.com, 2jiahaoxuu@gmail.com and 2chunghsienwu@gmail.com

Abstract— Ensemble involves combining the outputs of

multiple models to increase performance. This technique has

enjoyed great success across many fields in machine learning. This

study focuses on a novel approach to increase performance of a

model without any increase in number of parameters. The

proposed approach involves training a model that can have

different variations that perform well and different enough for

ensemble. The variations are created by changing the order of the

layers of a machine learning model. Moreover, this method can be

combined with existing ensemble technique to further improve the

performance.

 The task chosen for evaluating the performance is machine

translation with Transformer, as Transformer is the current

state-of-the-art model for this task as well as many natural

language processing tasks. The IWSLT 2014 German to English

and French to English datasets see an increase of at least 0.7

BLEU score over single model baseline with the same model size.

When combined with multiple model ensemble, minimum

increase of 0.3 BLEU is observed with no increase in parameters.

I. INTRODUCTION

The past decade has seen neural networks achieving the state

of the art across many machine learning tasks. Popular tasks

such as image classification in the field of computer vision [1],

and translation in natural language processing [2] have been

dominated by neural network-based methods. A common

technique to boost the performance of neural network is

ensemble. Ensemble has seen great success in high profile

competitions, such as Kaggle [3]. Ensemble works by

combining the output of multiple models. The most common

methods involve averaging the output of different models or

deciding on the output with a vote. This generally offers better

performance over the uncombined outputs, as long as there is

suffice difference between the outputs of each model. During

training, neural network will converge to one of the many local

minima. These different local minima result in different

outputs, which makes ensemble of independently trained

models an effective method to increase performance [4].

Since the common ensemble technique relies on having

multiple independently trained models, this results in multiple

times the number of parameters, which in turn multiples the

training time. These training cost can be quite costly for large

models, as state of the art models requires multiple expensive

graphic processing unit (GPU) that consumes hundreds of

watts per hour running in parallel [5]. Increase in number of

parameters also results in increase in memory usage, and may

be of concern for low-powered devices.

Some previous work to address the cost associated with

training multiple models for ensemble focused on extracting

multiple models from a single training run. These past works

often involved the use of cyclic learning rate schedule. Cyclic

learning rate schedule, such as snapshot ensemble [3], involved

repeating cycles of resetting to initial learning rate and quickly

dropping to a low value. One checkpoint was saved at the end

of each cycle, which resulted in several models equaling the

number of cycles. These models were used for ensemble.

The core concept for snapshot ensemble and similar methods

is to take multiple snapshots during one training run. These

snapshots are sub-optimal models compared to model trained

with standard learning rate schedule, but the ensemble of these

sub-optimal models can perform better than the standard

approach. Later work improves on this method by using

different cyclic learning rate schedules. Fast Geometric

Ensembling (FGE) was proposed after discovery of

connections between local minimum [6]. The ensemble method

was further improved by Stochastic Weight Averaging (SWA)

by using weight averaging as the ensemble method [7].

These cyclic learning rate schedule methods differ from our

proposed method in that they require obtaining multiple models

prior to ensemble, which multiples the number of parameters.

While, our method need only one model, which is used to

create variations. In addition, our method can be applied along

with other ensemble techniques, which further improves the

performance under the same number of parameters. This will

be detailed in the experiment section.

This study proposed a method for Transformer [8] to

ensemble without increasing parameter. The experiment was

carried out on machine translation, a task in which Transformer

is the state-of-the-art method [9, 10], and other tasks [11, 12].

The main contributions of this study are as follows:

1) Improve the model performance with the same number of

parameters for machine translation with Transformer.

2) Able to create exponential amount of variations of one

model.

3) The output of each variation is different enough from each

other to increase performance with ensemble.

4) Can be combined with other ensemble method to further

increase performance.

5) The proposed method is simple to implement for both

training and evaluation.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1026978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

II. METHODS

The goal is to create a form of ensemble without requiring

any additional parameters. To achieve this, a method of

creating variations of a model is needed. The proposed method

has taken inspiration from the recent success of applying

stochastic depth training to the Transformer.

A. Inspiration

Stochastic depth training was proposed to assist in training

Residual Network (ResNet) [13]. As deep ResNet can suffer

from vanishing gradient and slow training time, by randomly

dropping out layers during training, stochastic depth training

acts as regularization for very deep ResNet.

Recently, deep Transformer model for speech recognition

utilize this method as regularization as well [14, 15]. Other

research has applied stochastic depth training or similar

methods for different uses, such as research into extracting

small high-quality model for a large model trained with

stochastic depth training [15]. This is achieved by training a

Transformer with dropout applied to the layers. After training,

a smaller model can be extracted from the full model by

keeping a subset of layers. Depth-adaptive Transformer is a

Transformer which can learn to use different number of

computational steps for different inputs [16]. This is done by

having the Transformer select a subset of layers to run

depending on the input. The training method for depth-adaptive

Transformer can be seen as a heavily modified form of

stochastic depth training.

The above instance of applying stochastic depth training to

Transformer shows the Transformer can be resilient to layer

manipulation during training and evaluation. As such the

manipulation of layers is used to create variations for ensemble.

B. Proposed Methods

The core idea is to create a model that can manipulate its

layers to create variations with different outputs. These

variations of a model can be ensembled to produce better result.

Since each layer processes the input information and output

processed information, switch the order of layers is essentially

changing the order of how the information is processed. The

idea of changing order of information processing to create

variations is partially inspired by the decoding method in

statistical phrase-based machine translation. The decoding in

phrase-based translation forms different hypotheses by

translating different parts of a sentence in different orders, then

selects the best hypothesis by beam search [17]. Using an

example of translating “How is the weather today?”, one

hypothesis may start by translating “how is”, then “the

weather”, and finally “toady”. Another hypothesis may start

with “today”, then “how is”, and “weather”. Both hypotheses

may result in good quality translations, despite that they do not

process the information in the same order.

The take away is by processing the information in a different

order, the output can be different, and ensemble of different

outputs can lead to better performance. To change the order of

information processing, the order of layer of a model is

modified. As such, different permutations of layer will serve as

variations. Using alphabets to denote each layer, a 4-layered

model could have order of (A, B, C, D) for one variation and

(B, C, D, A) for another variation.

 The method to generate variations is to permute the layers.

To provide structured permutation, the layers of a model is

divided into pools. Permutation is done to the pools of layers.

Using a 4-layered model as an example. The 4 layers could be

divided into 2 pools with size 2 each. In which case, the first

two layers can be shuffled and last two layers can be shuffled,

but not between the two pools. Figure 2 lists out some valid and

invalid permutations of layers for this example. For this work,

the pools are always contiguous, therefore, the pools are

described by their size. For example, a pool size of (2, 2)

describes two pools with size two each. While, pool size of (1,

3, 1) refers to a model with a pool of size 1, followed by a pool

of size 3, then a pool of size 1.

For the model to change the layer order and produce a valid

result, the training process needs to be modified to incorporate

switching the layer order. Two methods of incorporating layer

permutation into training are devised: set order and random

order. Both methods involve switching the layer order at each

update step during training.

For set order, a set of predetermined layer orders are decided

on. During training, a layer order is randomly selected from the

set for each step. For example, a four-layered model might be

using layer order (A, B, C, D) and (A, C, B, D). At each step of

the training process, one of these two-layer order is randomly

selected to run the model. Algorithm 1 shows how the layer

stack of a model is modified for set order training. This means

for each update step, the same set of parameters are trained in

a different configuration. This is similar to train multiple

models with weight tying between different layers. Since all

Fig. 1 Examples of different variations of a 4-layer model.

Fig. 2 Examples valid and invalid layer permutation for a 4-layer

model with pool size (2, 2).

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1027

the parameters are shared between the variations, no increase

in parameter is needed.

Algorithm 1: One run of the layers for set order

 Input: input of the layers: x, set of layer order: O

 Output: output of the layers

1 o ← randomly select one order from O

2 for 𝒊 ∈ o do

3 𝒙 ← 𝐋𝐚𝐲𝐞𝐫𝒊(𝒙)

4 end

5 return 𝒙

For random order, a random layer order is selected from all

valid permutations of layers for each step of training. With the

pool size dictating what constitute valid permutations.

Algorithm 2 shows how the layer stack of a model is modified

for random order training. An implication of using all valid

permutations is an exponential amount of variations which

could be trained together. For a six-layered model with pool

size (6), there could be 720 permutations/variations. With the

encoder-decoder architecture used in machine translation, if

both encoder and decoder have 6 layers with pool size (6), a

total of 518,400 variations are possible. This setup is used in

the experiment, producing model that has 518,400 well

performing variations, that can be ensembled for better

performance.

Algorithm 2: One run of the layers for random order

 Input: input of the layers: x, list of layer pool size: S

 Output: output of the layers

 1 𝑖 ← 0

 2 L ← list of all layers index

 3 for 𝑠 ∈ 𝑆 do

 4 RandPerm(L(i...i+s-1))

 5 𝑖 ← 𝑖 + 𝑠

 6 end

 7 for 𝑗 ∈ L do

 8 𝑥 ← Layer𝑗(𝑥)

 9 end

10 return 𝑥

 Function RandPerm(list):
 return in-place random permutation of list

C. Evaluation

After training, the model is evaluated with random set of

valid variations, then the outputs are ensembled. For set order

training, valid variations are the set of layer orders used for

training. For random order training, valid variations are any

valid layer permutation as dictated by the pool size. The

outputs of the models can be ensembled by any ensemble

technique. The method of ensemble for the experiment is

average ensemble.

III. EXPERIMENTS

The task used for evaluating the model was sentence-level

translation. The baseline of single model Transformer was

compared with a single model with ensemble of 5 variations.

In addition, ensemble of 3 and 5 baselines was compared with

ensemble of 3 and 5 models of the proposed method. The

datasets used were the IWSLT 2014 German to English and

French to English [18]. BLEU score [19] was used for

evaluating the quality of translation. All experiments were

conducted on a single Nvidia RTX 2080 Ti. The baseline was

provided by Fairseq framework [20], and the model was

implemented with the framework as well.

A. Experimental Setup

The datasets were cleaned and tokenized with Moses [21].

Byte pair encoding (BPE) [22] was used to split the vocabulary

into subword units of the datasets. For both datasets, a total of

10k subword units was used. Label smoothing [23] of 0.1 was

used. All models were trained with Adam [24] as optimizer

with β_1=0.9, β_2=0.98, and ϵ=〖10〗^(-9). The learning rate

schedule was the same as the original Transformer [8] with

4000 step of warmup, and learning rate of 5×〖10〗^(-4).

Dropout [25] of 0.3 was applied. All models in the experiments

were the Transformer [8] with 6 layers for encoder, 6 layers for

decoder, model dimension of 512, 4 heads for multi-head

attention, and 1024 dimension for inner dimension of position-

wise feed-forward network. The data were batched with a

maximum token count of 4096. This is the same setting as

recommended by Fairseq [20] for the dataset. For generation of

translated sentence, beam search of beam size 5 with length

penalty of 0.6 was used. All ensembles were done by averaging

the model output probability distribution during generation.

B. Experimental Results

This section compared the baseline of standard Transformer

with the proposed method. The proposed method used a pool

size of (6) for encoder and decoder, and random order training.

After training, the proposed method randomly selected 5

variations for ensemble. All reported result in this section was

repeated with 5 trials. The mean and standard deviation were

reported.

Table 1 Results of single model baseline and proposed method.

IWSLT 2014 German to English

Model BLEU score Parameters

Baseline

Proposed Method
34.63 (σ: 0.109)

35.42 (σ: 0.168)

39M

39M

IWSLT 2014 French to English

Model BLEU score Parameters

Baseline

Proposed Method

39.75 (σ: 0.083)

40.46 (σ: 0.124)

40M

40M

For both datasets, the proposed method outperformed the

baseline. From Table 1, the IWSLT 2014 German to English

saw an improvement of 0.79 BLEU score, and IWSLT 2014

French to English saw an improvement of 0.71 BLEU score

with the same number of parameters used by the baseline and

the proposed method.

To show the performance of each variation, the average of

the 25 randomly selected variations across 5 trials were

reported in Table 2. This shows the training method did not

negatively impact the performance of the model.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1028

Table 2 Results of variations from the proposed method.

IWSLT 2014 German to English

Model BLEU score Parameters

Baseline

Single Variation

34.63 (σ: 0.109)

34.69 (σ: 0.134)

39M

39M

IWSLT 2014 French to English

Model BLEU score Parameters

Baseline

Single Variation
39.75 (σ: 0.083)

39.77 (σ: 0.124)

40M

40M

To demonstrate the proposed method can be combined with

other ensemble techniques, the experiments combined average

ensemble of multiple models with the proposed method. The

baseline was the average ensemble of multiple models, while

the proposed method was the ensemble of multiple variations

across multiple models. Results of ensemble of 3 model and

ensemble of 5 models were reported. For the proposed method,

5 variations were randomly selected from each model. In the

ensemble of 3 models, this resulted in a total of 15 variations,

and 25 variations for ensemble of 5 models.

Table 3: Results of multiple model ensemble of baseline andproposed method.

IWSLT 2014 German to English

Model BLEU score Parameters

3 Model Baseline

3 Model Proposed Method

36.43

36.76

39M × 3

39M × 3

5 Model Baseline

5 Model Proposed Method

36.82

37.12
39M × 5

39M × 5

IWSLT 2014 French to English

Model BLEU score Parameters

3 Model Baseline

3 Model Proposed Method

40.91

41.24
40M × 3

40M × 3

5 Model Baseline

5 Model Proposed Method

41.36

41.70

40M × 5

40M × 5

From Table 3, the proposed method showed improvements

of at least 0.3 BLEU score across 3 model, and 5 model

ensemble on both datasets, with no increase in parameter over

baseline. As reference, a 66% increase of parameters between

ensemble of 3 baseline model and 5 baseline models resulted

in an improvement of 0.39 BLEU score for German to English,

and 0.45 BLEU score for French to English.

Table 4: Results of hyperparameter selection.

IWSLT 2014 German to English

Training Pool Size 1 Model 5 Model

set order

random order
set order

random order

(1, 4, 1)

(1, 4, 1)
(6)

(6)

35:07

35.15
35.27

35.42

36.86

37.12
36.94

36.52

IWSLT 2014 French to English

Training Pool Size 1 Model 5 Model

random order

random order

(1, 4, 1)

(6)

40.11

40.46

41.70

41.42

The proposed method introduced two types of

hyperparameters: training method and pool size. Both training

methods and different pool sizes were tested on both datasets

in Table 4. The result showed random order training and pool

size of (6) performed the best for single model, while random

order training with pool size of (1, 4, 1) performed the best for

multiple model ensemble. In both cases, the random order

training performed the best. For single model scenario, a large

pool size was better. For multiple model ensemble, having

restriction in permutation can help.

There were several neural machine translation approaches,

and some of them which also used IWSLT 2014 database were

selected for comparison, as shown in Table 5. These works

differed in many aspects, such as ensemble [26], training step

design [27], data augmentation [28], and model architecture

design [29]. Among them, data augmentation has been the

mainstream improvement method in recent years. It can be

found from the table that the performance of our proposed

method is similar to that of the existing methods, but for the

method of ensemble, our method can improve the performance

a lot. And it can be easily and universally applied to the existing

models and other ensemble design.

Table 5: Results of the existing methods on IWSLT’14 (De-En)

Methods (Ensemble) BLEU score

ConvS2S Ensemble[26] 34.61

Ours 37.12

Methods (Single model) BLEU score

Tied-Transformer[27] 35.52

Soft contextual DA[28] 35.78

BERT-fused[29] 36.11

Ours 35.42

IV. CONCLUSIONS

Ensemble is a powerful machine learning tool. Our proposed

method focuses on creating variations from a single model for

ensemble. Two training method and one way to describe how

to permute the layers are proposed. The proposed method

results in better performance with the same number of

parameters. In addition, our method can be combined with

existing ensemble method to further improve performance. For

single model ensemble, a large pool size is beneficial, while

restriction for permutation is better for multiple model

ensemble. Random order training performs better in both cases.

Experiments shows improvements of at least 0.7 BLEU

score over the baseline with no increase in parameters. When

combined with multiple model ensemble, the proposed method

beats the baseline by at least 0.3 BLEU score with the same

number of parameters. As reference, it requires 66% increase

in parameters to increase BLEU score by 0.39 on IWSLT 2014

German to English between 3 model ensemble and 5 model

ensemble. And the proposed method can perform well

comparing with existing studies. As state-of-the-art models are

on the scale that requires hundreds of GPUs to train, which is

outside the reach of a single GPU. Future works on applying

proposed method to training large models efficiently is needed.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1029

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton,

"Imagenet classification with deep convolutional neural

networks," Advances in neural information processing systems,

vol. 25, pp. 1097-1105, 2012.

[2] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, "Sequence to

sequence learning with neural networks," in Advances in neural

information processing systems, 2014, pp. 3104-3112.

[3] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E

Hopcroft, and Kilian Q Weinberger, "Snapshot ensembles:

Train 1, get m for free," arXiv preprint arXiv:1704.00109, 2017.

[4] Lars Kai Hansen and Peter Salamon, "Neural network

ensembles," IEEE transactions on pattern analysis and machine

intelligence, vol. 12, no. 10, pp. 993-1001, 1990.

[5] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli,

"Scaling neural machine translation," arXiv preprint

arXiv:1806.00187, 2018.

[6] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry

Vetrov, and Andrew Gordon Wilson, "Loss surfaces, mode

connectivity, and fast ensembling of dnns," in Proceedings of

the 32nd International Conference on Neural Information

Processing Systems, 2018, pp. 8803-8812.

[7] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry

Vetrov, and Andrew Gordon Wilson, "Averaging weights leads

to wider optima and better generalization," arXiv preprint

arXiv:1803.05407, 2018.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin, "Attention is all you need," in Advances in neural

information processing systems, 2017, pp. 5998-6008.

[9] Marcin Junczys-Dowmunt, "Microsoft translator at WMT 2019:

Towards large-scale document-level neural machine

translation," arXiv preprint arXiv:1907.06170, 2019.

[10] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli,

and Sergey Edunov, "Facebook FAIR's WMT19 News

Translation Task Submission," arXiv preprint

arXiv:1907.06616, 2019.

[11] Ming-Hsiang Su, Chung-Hsien Wu, and Hao-Tse Cheng, "A

Two-Stage Transformer-Based Approach for Variable-Length

Abstractive Summarization," IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 28, pp. 2061-

2072, 2020.

[12] Yi-Hsuan Wang, Jia-Hao Hsu, Chung-Hsien Wu, and Tsung-

Hsien Yang, "Transformer-based Empathetic Response

Generation Using Dialogue Situation and Advanced-Level

Definition of Empathy," in 2021 12th International Symposium

on Chinese Spoken Language Processing (ISCSLP), 2021:

IEEE, pp. 1-5.

[13] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q

Weinberger, "Deep networks with stochastic depth," in

European conference on computer vision, 2016: Springer, pp.

646-661.

[14] Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus

Müller, Sebastian Stüker, and Alexander Waibel, "Very deep

self-attention networks for end-to-end speech recognition,"

arXiv preprint arXiv:1904.13377, 2019.

[15] Angela Fan, Edouard Grave, and Armand Joulin, "Reducing

transformer depth on demand with structured dropout," arXiv

preprint arXiv:1909.11556, 2019.

[16] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli,

"Depth-adaptive transformer," arXiv preprint arXiv:1910.10073,

2019.

[17] Philipp Koehn, Franz J Och, and Daniel Marcu, "Statistical

phrase-based translation," UNIVERSITY OF SOUTHERN

CALIFORNIA MARINA DEL REY INFORMATION

SCIENCES INST, 2003.

[18] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli,

and Marcello Federico, "Report on the 11th iwslt evaluation

campaign, iwslt 2014," in Proceedings of the International

Workshop on Spoken Language Translation, Hanoi, Vietnam,

2014, vol. 57.

[19] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu, "Bleu: a method for automatic evaluation of machine

translation," in Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, 2002, pp. 311-318.

[20] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam

Gross, Nathan Ng, David Grangier, and Michael Auli, "fairseq:

A fast, extensible toolkit for sequence modeling," arXiv preprint

arXiv:1904.01038, 2019.

[21] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-

Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,

Wade Shen, Christine Moran, and Richard Zens, "Moses: Open

source toolkit for statistical machine translation," in Proceedings

of the 45th annual meeting of the association for computational

linguistics companion volume proceedings of the demo and

poster sessions, 2007, pp. 177-180.

[22] Rico Sennrich, Barry Haddow, and Alexandra Birch, "Neural

machine translation of rare words with subword units," arXiv

preprint arXiv:1508.07909, 2015.

[23] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser,

and Geoffrey Hinton, "Regularizing neural networks by

penalizing confident output distributions," arXiv preprint

arXiv:1701.06548, 2017.

[24] Diederik P Kingma and Jimmy Ba, "Adam: A method for

stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.

[25] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya

Sutskever, and Ruslan R Salakhutdinov, "Improving neural

networks by preventing co-adaptation of feature detectors,"

arXiv preprint arXiv:1207.0580, 2012.

[26] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,

and Yann N Dauphin, "Convolutional sequence to sequence

learning," in International Conference on Machine Learning,

2017: PMLR, pp. 1243-1252.

[27] Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin,

"Tied transformers: Neural machine translation with shared

encoder and decoder," in Proceedings of the AAAI Conference

on Artificial Intelligence, 2019, vol. 33, no. 01, pp. 5466-5473.

[28] Fei Gao, Jinhua Zhu, Lijun Wu, Yingce Xia, Tao Qin, Xueqi

Cheng, Wengang Zhou, and Tie-Yan Liu, "Soft contextual data

augmentation for neural machine translation," in Proceedings of

the 57th Annual Meeting of the Association for Computational

Linguistics, 2019, pp. 5539-5544.

[29] Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang

Zhou, Houqiang Li, and Tie-Yan Liu, "Incorporating bert into

neural machine translation," arXiv preprint arXiv:2002.06823,

2020.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1030

