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Abstract—A reliable and accurate automatic pronunciation
assessment is of great help for second language (L2) learners.
Commonly, a Gaussian process (GP)-based model is utilized to
output pronunciation scores and their uncertainty. However, the
application of GPs is limited by computational intractability
when data are sufficiently numerous. In this paper, we propose
an improved GP-based model for uncertainty prediction in au-
tomatic pronunciation assessment utilizing a small set of pseudo
samples derived from the full training set. To further exploit
more expressive information from data, we optimize the network
based on deep kernel learning with deep features derived from an
automatic speech recognition (ASR) system. Experimental results
based on one spoken test show its superiority compared with
the GP-based baselines with the full training set and standard
kernels. With a small number of pseudo samples, which is only
25% compared to the full training set, we can match the full GP
performance.
Keywords: automatic pronunciation assessment, uncertainty
estimation, pseudo samples, deep kernel learning,

I. INTRODUCTION

There is a growing demand for learning English as a second
language, and reliable and accurate assessment for language
learning is necessary for L2 learners. With the development of
Computer-Assisted Pronunciation Training (CAPT) technol-
ogy, automatic pronunciation assessment has become possible.
Commonly, automatic speech pronunciation has been designed
to evaluate learners’ reading aloud proficiency in restricted
testing tasks such as Read-by-Words and Read-by-Sentences
[1].

Traditional features such as Goodness of pronunciation
(GOP) are commonly used for automatic pronunciation assess-
ment. GOP is defined as the posterior probability of the uttered
phoneme given the corresponding acoustic segment calculated
by an automatic speech recognition (ASR) system [2]. De-
signing these handcrafted features is always cumbersome and
requires human knowledge, which may lead to insufficient
representations of the speech. With advances in deep learning
(DL), representation learning, which learns an intermediate
representation of the input signal automatically, has been
proven more useful and less dependent on human knowledge
[3]. It has been very promising for different speech-based
systems to learn more generalized features based on deep
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neural networks (DNN) compared to traditional handcrafted
ones.

A reliable automatic pronunciation assessment for high-
stake tests is still of a big challenge. There are significant
variations in the speech or spoken responses. The speech signal
conveys not only the linguistic information but also a lot
of information about the speaker, including gender, age, and
regional origin [4]. Moreover, variations in the quality of the
recordings, such as background noise and volume levels, also
make the assessment process difficult [5]. Thus, uncertainty
estimation is necessary for reliable automatic pronunciation
assessment. There are two sources of uncertainty conceptually
[6][7]. The first one is epistemic uncertainty, which is also
known as knowledge uncertainty. It represents uncertainty in
model predictions due to lack of understanding or knowledge
of the model. It can be reduced by providing more knowledge
to the model. The second one is aleatoric uncertainty or data
uncertainty. It results from genuine stochasticity in the data.
The noise of data results in high entropy in the prediction.
There is significant knowledge uncertainty in automatic pro-
nunciation assessment. Due to variations in pronunciation,
automatic pronunciation assessment may suffer from the in-
sufficiency of the training data. For speakers unseen by the
automated system, the grade predictions may be poor [5].

Gaussian process (GP) was explored to provide a measure of
the uncertainty in automatic grading, where the mean value is
used for scoring, and the variance is treated as the uncertainty
value of the score [5]. The non-parametric nature of GP has
lead to O(N3) training cost time and O(N2) testing cost
time. It becomes impractical when the amount of training data
increases [7][8]. Many recent studies have attempted to make
sparse approximations to the full GP to bring the time cost
down. Some studies normally selected a subset from training
samples based on some information criterion. The next point
was chosen for inclusion into the active set to maximize the
differential entropy score [9]. A fast forward selection criterion
was utilized to select points from the training samples [10].
These methods lack a reliable way of learning kernel hyper-
parameters, as the active set selection interferes with their
learning procedure [11]. Some work made joint optimization
to find active set point locations and hyper-parameters. Pseudo
samples were treated as parameters and learned by maximum
likelihood (ML), which were not constrained to be a subset
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of the data. Then, the covariance function of GP is param-
eterized based on these pseudo samples [11]. A variational
learning method defined the inducing inputs to be variational
parameters and selected them by minimizing the Kullback-
Leibler (KL) divergence between a variational GP and the
true posterior GP [12][13]. In this paper, we conduct pseudo
sample learning to improve the GP-based method. Different
from previous work’s implicit pseudo sample learning by ML,
which may be trapped in local optima, we explicitly model
the relationship between pseudo samples and raw samples
based on a neural network. As a non-parametric method, the
information capacity of the GP-based model may decrease
with the decreasing amount of available data [14]. Deep kernel
learning was developed to combine the structural properties of
deep architectures with the non-parametric flexibility of kernel
methods [14]. Inspired by this, we jointly learn the pseudo
samples and expressive kernels based on deep kernel learning.

In this paper, we utilize a GP-based model for uncertainty
prediction in automatic pronunciation assessment. A small
subset of pseudo samples of number M are derived from the
full training samples of number N based on a neural network
transformation, where M << N . This leads to a sparse GP-
based model, which has O(M2N) training cost time and
O(M2) testing cost time. To exploit more information from
the pseudo and raw samples, we utilize deep kernel learning to
jointly learn the pseudo samples and expressive kernels based
on deep features derived from an automatic speech recognition
(ASR) system. Experimental results based on the spoken test
show the superiority to the GP-based baselines with full
samples and the traditional kernel functions. In section 2,
we will introduce the proposed method. The experiments are
conducted, and the results are shown and discussed in section
3. We will draw the conclusion and future suggestions in
section 4.

II. PROPOSED METHOD

A. Gaussian process

A GP-based model is nonparametric, which learns a map-
ping from an infinite number of inputs to corresponding
output values [15]. It specifies a prior and derives a posterior
distribution over functions f(x). The distribution is obtained
over a set of function values f = {f(x1), · · · , f(xN )} at a
finite set of training points X = {x1, · · · , xN}. The joint
Gaussian distribution for f(X) is defined as Eq. (1), where
m(X) is the mean and K(X,X) is the covariance matrix as
functions of X . The observed outputs Y = {y1, · · · , yN} are
assumed to be Gaussian-distributed around the real function
values f(X) with additive observation noise N (0, σ2) as
defined in Eq. (2).

f ∼ N (m(X),K(X,X)) (1)

Y ∼ N (m(X),K(X,X) + σ2I) (2)

To make prediction for a new value of x∗ given the training
data D = {Y,X}, a joint distribution over both the training

and test targets is defined in Eq. (3).[
Y

y∗

]
∼ N (0,

[
K(X,X) + σ2I k(x∗, X)

k(x∗, X)T k(x∗, x∗)

]
) (3)

As Y and y∗ are jointly Gaussian distributed, the conditional
distribution is also Guaassian as in Eq. (4), where µ̂ and σ̂2

are defined in Eq. (5) and Eq. (6), respectively.

p(y∗|x∗,D) ∼ N (y∗; µ̂, σ̂2) (4)

µ̂ = k(x∗, X)T (K(X,X) + σ2I)−1Y (5)

σ̂2 = k(x∗, x∗)− k(x∗, X)T (K(X,X) + σ2I)−1k(x∗, X)
(6)

The commonly used kernel function is the radial basis co-
variance function (RBF) defined in Eq. (7), which is also used
in this paper. The RBF-based kernel function is parameterized
by two parameters, namely l and σ2

y . σ2
y is the output variance,

and l is the length scale.

k(x, x∗) = σ2
yexp(−

(x− x∗)2

2l2
) (7)

The GP-based model takes O(N3) training cost time for
the computation of the inversion of the covariance matrix. It
takes O(N2) testing cost time once the inversion is done.

B. Improved GP with pseudo samples based on deep kernel
learning

As the GP-based model is limited by computational in-
tractability when the training data increases, we modify GP
based on pseudo samples of number M derived from all the
training samples of number N , where M << N . The pseudo
samples are explicitly transformed from the training samples
by a deep neural network. The training and testing cost times
can be reduced dramatically even with the additional neural
network. To exploit expressive representations of data, we
jointly optimize the kernel hyper-parameters and the weights
of the network based on deep kernel learning utilizing deep
features derived from an ASR acoustic model. To predict
scores and uncertainty of testing samples, we use pseudo
samples as the input to the GP-based model.

1) Deep feature representations: For deep kernel learn-
ing, we utilize deep feature representations as pronunciation
features x. The deep features of an utterance are obtained
from an ASR system. First, a DNN-HMM-based system for
ASR is trained. The DNN-based acoustic model takes acoustic
features based on fbank as input and outputs the posterior
probability of the senone given observation with acoustic
frames [16]. It consists of multi-layers of hidden units between
the inputs and outputs. The representations from the last layer
are converted to the frame-level senone predictions based on
a fully connected (FC) layer. It is optimized by cross-entropy
loss between the predictions and frame-level labels aligned
using a GMM-HMM system. We use the hidden outputs from
the DNN’s last layer and the alignment time of each phoneme
in an utterance from the ASR system. We obtain the final
representation of the utterance by averaging the phoneme
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representations, which are calculated by averaging the hidden
outputs hij of corresponding frames, as defined in Eq. (8):

xutt =
1

q

q∑
i=1

(
1

mp

mp∑
j=1

hij) (8)

where mp indicates the number of frames for the correspond-
ing phoneme p and q is the total numbers of phonemes in the
utterance.

2) Network structure for pseudo samples and deep kernel
learning: We propose a network structure to explicitly model
the relationship between pseudo samples and the raw training
data as shown in Figure 1.

Raw samples

...

...

...

Pseudo samples
Network

transformation

Fig. 1. Learning of hidden representations ĥ of pseudo samples x̂

It consists of three parts: input of raw samples x, multi-
layer transformation, and hidden representations ĥ of pseudo
samples x̂. Note that we learn the hidden representations ĥ
directly for the deep kernel instead of the original x̂, which is
not necessary for the deep kernel calculation. We denote the
total number of label classes as C, where the ith label class is
defined as li, and the number of samples for the corresponding
label is n(li). Deep features of the jth sample under label
li is denoted as xj

li
. The deep features of each label class

are then mapped by multiple hidden layers to calculate the
hidden representations ĥo

li
for the oth pseudo samples x̂o

li
. The

total number of pseudo samples of label li is m(li), where
m(li) << n(li).

For deep kernel learning, we also need to transform the deep
features of raw training samples xl to hidden representations
h(xl) using a multi-layer neural network.

3) Network optimization and prediction: Based on hidden
representations Ĥ of pseudo samples X̂ , we obtain the like-
lihood defined as Eq. (9), which is similar to Eq. (4), where
x is transformed to h(x) based on multiple hidden layers. To
make the pseudo samples to be distributed similarly to the real
data as previous work did [11], we place a Gaussian prior to
pseudo samples defined in Eq. (10). We obtain the marginal
likelihood defined in Eq. (11) by combining Eq. (9) and Eq.
(10). We maximize the log marginal likelihood with respect to

weights of the network and deep kernel hyper-parameters in
Eq. (12), where θ are the parameters of the network. The log
marginal likelihood can be divided into two terms shown in
Eq. (13). The whole network can be optimized by a multitask
learning (MTL) method combining two losses as shown in
Figure 2.

p(y|x, Ĥ, Y ) = N (y|k(h(x), Ĥ)T (K(Ĥ, Ĥ) + σ2I)−1Y,

k(h(x), h(x))− k(h(x), Ĥ)T (K(Ĥ, Ĥ) + σ2I)−1k(h(x), Ĥ))
(9)

p(Y |Ĥ) = N (Y |0,K(Ĥ, Ĥ) + σ2I)) (10)

p(y|x, Ĥ, θ) = p(y|x, Ĥ, Y ) ∗ p(Y |Ĥ) (11)

θ, σy, l = argmax
θ,σy,l

n∑
i=0

log(p(yi|xi, Ĥ, θ)) (12)

θ, σy, l = argmax
θ,σy,l

(

n∑
i=0

log(p(yi|xi, Ĥ, Y )) +

n∑
i=0

log(p(yi|Ĥ)))

= argmax
θ,σy,l

(Likelihood1 + Likelihood2)

(13)
Prediction is made by considering a new input point x∗

...

Hidden layers

...

Pseudo sample learning

...

Fig. 2. Network optimization of improved GP

conditioned on the pseudo samples and hyperparameters. The
new sample’s distribution is predicted as Eq. (9).

III. EXPERIMENTS

A. Corpus

First, we train the ASR model based on a mixed corpus
of native and non-native data. The native data comes from
the 960-hour native LibriSpeech corpus [17], and the non-
native data is 1000-hour recordings of Chinese teenagers.
The speech scoring data is obtained from restricted reading-
aloud tasks of one English oral test of the Chinese National
Higher Education Entrance Examination. The number of data
for reading-aloud is 3,000 recorded by 3,000 Chinese ESL
candidates. The scoring ranges are 0-5 with a 1 grade interval.
The lowest score represents completely wrong pronunciation
and the highest score represents native-like pronunciation. Two
experts rated the data, and the final results are obtained by
averaging these two scores, resulting in half grades in some
scenarios. The averaged inter-rater correlations, calculated by
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Pearson correlation coefficient (PCC) between scores of one
rater and the other, is 0.76. The data is divided into 60% for
training and 40% for testing. The distribution of data is shown
in Figure 3.
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Fig. 3. Distribution of scoring

B. Experimental setup

The DNN-HMM-based ASR model was trained to achieve
a word error rate (WER) of 15% for non-native data. The
DNN-based acoustic model is composed of a time delay neural
network with layer number of 11 [18]. We utilize the deep
features from the acoustic model with the dimensionality of
256 as input for uncertainty estimation. The deep features are
computed at the frame level with 30ms of each frame. These
features are transformed by one hidden layer with parameters
of 256 ∗ 32 for deep kernel learning. Parameters for ith label
class in pseudo sample learning are 256∗32 and n(li)∗m(li),
where m(li) are predefined according to n(li). In this paper,
n(li) is number of the training samples with label li, and
m(li) is the number of pseudo samples with label li. We will
experiment with different numbers of pseudo samples in the
following experiments. The parameters of the hidden layer
are determined by tuning the model. Parameters for the RBF-
based kernel, namely l and σ2

y , are randomly initialized. We
use Adam optimizer [19] with a learning rate 1e-3 to train the
network.

C. Comparative study

First, we compare the model performance with the typical
GP and the previous work called sparse GP using pseudo
inputs (SPGP) [11] based on full samples and their subsets.
The implementation of SPGP is based on an open-source
Python package [20], and the kernel for SPGP is RBF-
based kernel, which is the same as ours. The performance
of the scoring model is evaluated by calculating PCC between
prediction scores and expert labeling, and the ratios of low
prediction errors, which are defined as being inside 0.5 (i.e.,
less than or equal to half a grade out, denoted as % ≤ 0.5) or
inside 1.0 (i.e., less than or equal to a full grade out, denoted
as % ≤ 1.0) of the expert grade. Second, we evaluate the
rejection performance by the Area Under the Curve (AUC)

based scheme, which has been widely applied in uncertainty
estimation for automatic speech assessment [7][8]. The AUC
rejection ratio is defined as Eq. (14), where AUCrnd is
the area under the random rejection curve, AUCopt is the
optimal rejection curve, and AUCmod is the model rejection
curve. Finally, we will do some ablation studies to show the
effectiveness of our proposed method.

AUCRR =
AUCmod −AUCrnd

AUCopt −AUCrnd
(14)

1) Prediction performance of the scoring model: First, we
compare the prediction performance with the typical GP and
SPGP with full samples. The comparison results are shown in
Table I. From the results, we can see the proposed method
achieves results comparable to the typical GP and SPGP
baselines with full samples. Then, we compare results based
on different numbers of subset samples shown in Figure 4.
The subset samples of different percents of training samples
are learned or selected by the proposed method, the SPGP-
based method, and a random method, respectively. The dash
horizontal line in the figure indicates the performance of GP
with full training samples. The random selection is made by
picking an active set randomly from training data many times.
From the figure, we can see both the SPGP-based method
and the proposed method outperform the random method
significantly. The SPGP-based method performs inferior to
the proposed method when the percent of samples is less
than 25%. When learning pseudo samples with the number of
25% of the training samples, the proposed method achieves
comparable performance compared to GP with full samples.

TABLE I
PREDICTION PERFORMANCE COMPARISON IN READING ALOUD

Model GP SPGP (Full) Our (Full)
PCC 64.3 63.9 64.1

% ≤ 0.5 89.3 89.7 90.2
% ≤ 1 98.3 99.1 99.3
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Fig. 4. PCC with different percents of pseudo or active samples
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2) Rejection performance of the scoring model: Uncer-
tainty estimation is used to reject predictions of high uncer-
tainty. We rank all the candidates by measuring uncertainty and
replacing the most uncertain predictions with human labels.
We compare performance among the random replacement, the
uncertainty-based replacement, and the optimal replacement.
The optimal rejection is conducted by rejecting the decreasing
absolute error values between predictions and human labels.
Three AUCRR values are computed based on PCC, % ≤ 0.5
and % ≤ 1. The standard deviation values derived from GP
are used as the uncertainty measures of the predictions. The
rejection performance is shown in Table II, where the SPGP-
based method and our method are based on pseudo samples
with 25% of the number of training samples.

TABLE II
REJECTION PERFORMANCE (AUCRR) COMPARISON

Model GP SPGP (25%) Ours (25%)
PCC 40.3 35.7 37.1

% ≤ 0.5 43.7 39.7 38.7
% ≤ 1 47.1 41.1 44.5

From the results, we can see that the rejection performance
degrades a little compared with the GP-based method with
full samples. By analyzing the uncertainty score distributions
of full GP and our method, we observe that the GP-based
method with full samples has a larger mean and standard de-
viation than the proposed method, indicating underestimation
of uncertainty with pseudo samples.

3) Ablation studies: To show the effectiveness of the pro-
posed method, we conduct two experiments: (1) different
features, including manual features and deep features (DP);
(2) network optimization with deep kernel learning (DKL) and
without deep kernel learning. The manual features of each ut-
terance are average GOP scores [2] of each phoneme, with the
dimensionality of 39 based on the Carnegie Mellon University
(CMU) Pronouncing Dictionary [21]. We replace deep features
with manual features for manual feature experimental setting.
We remove hidden layers, which are used to transform training
samples, for the optimization without deep kernel learning.
We compare the rejection performance among these settings
based on pseudo samples with 25% of the number of training
samples. The rejection results are shown in Table III. From the
results, we can see the rejection performance degrades greatly
when using manual features, indicating deep features contains
more sufficient pronunciation information than the manually
designed features. Deep kernel learning can further facilitate
representation of the data by pseudo sample learning.

TABLE III
REJECTION PERFORMANCE (AUCRR) OF DKL AND DP

Ours w/o DKL w/o DP
PCC 37.1 32.1 29.3

% ≤ 0.5 38.7 34.3 35.1
% ≤ 1 44.5 35.3 30.2

IV. CONCLUSION

In this paper, we propose an improved GP-based method for
automatic pronunciation assessment based on pseudo samples
and deep kernel learning. We explicitly learn the pseudo
samples from the training data based on neural network
transformation. The hyperparameters for GP, and parameters
for pseudo sample learning and deep kernel learning are
jointly optimized. Experimental results based on the spoken
test demonstrate the proposed method can achieve comparable
scoring and rejection performance with the typical GP-based
and SPGP-based methods. Also, with fewer samples the pro-
posed method performs better than the SPGP-based method.
In the future, we will extend the proposed method to assess
less restricted spoken tasks.
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