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Abstract—Human can recognize speech, as well as the pe-
culiar accent of the speech simultaneously. However, present
state-of-the-art ASR system can rarely do that. In this paper,
we propose a multilingual approach to recognizing English
speech, and related accent that speaker conveys using DNN-
HMM framework. Specifically, we assume different accents of
English as different languages. We then merge them together
and train a multilingual ASR system. During decoding, we
conduct two experiments. One is a monolingual ASR-based
decoding, with the accent information embedded at phone level,
realizing word-based accent recognition (AR), and the other is
a multilingual ASR-based decoding, realizing an approximated
utterance-based AR. Experimental results on an 8-accent English
speech recognition show both methods can yield WERs close to
the conventional ASR systems that completely ignore the accent,
as well as desired AR accuracy. Besides, we conduct extensive
analysis for the proposed method, such as transfer learning with
out-domain data exploitation, cross-accent recognition confusion,
as well as characteristics of accented-word.

I. INTRODUCTION

Automatic speech recognition (ASR) has been significantly
improved thanks to the deep neural network techniques [1],
[2], [3], [4]. However, there still remains challenges in speech
recognition area. For instance, state-of-the-art ASR perfor-
mance would be severely degraded when it recognizes noisy
speech [5], [6]. Another limitation is that most present ASR
systems are only capable of recognizing monolingual speech.
However, as globalization trends are deepened, multilingual
ASR systems [7], [8], [9] are greatly required.

Except for the linguistic content that is recognized by ASR
system, speech also conveys other important information about
the speaker, such as voice, emotion, gender, accent information
etc. As a result, recognition of such information is also widely
studied [10], [11], [12], [13], [14], [15], [16] in speech research
area.

Though speech related research is widely studied, few
efforts are focused on combining different recognition tasks
as mentioned to study jointly. For example, one rarely com-
bines speech recognition with gender recognition, or com-
bines speech recognition with accent recognition. More often
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than not, they are studied separately. This contradicts our
human speech recognition behavior. Intuitively, while human
recognize speech content, they can also recognize the gender
or accent, or even speaker emotion of the incoming speech
simultaneously.

In this paper, we propose a joint approach to performing
speech and accent recognition using DNN-HMM modeling
framework, namely TDNNf [17]. One of the advantages for
the proposed method is that it can be easily deployed for real-
time speech and accent recognition simultaneously. Our RTF
is ∼0.4 under normal 2.6 GHz CPU setting. Meanwhile, we
also submit another paper using Transformer-based End-to-
end (E2E) approach [18]. Though the E2E approach can yield
better results taking advantage of out-domain data, the main
limitation of the method is much slower than TDNNf method,

The paper is organized as follows. Section II is to review
prior related work. Section III presents the proposed joint
speech and accent recognition method. Section IV is our data
specification. Section V briefs the overall experimental setup
and Section VI presents the results of the proposed methods.
After that, we perform further analysis in Section VII, and
draw conclusions in Section VIII.

II. RELATED WORK

Recently, multilingual ASR has been drawing wide atten-
tion, but most of the works are only concerned with bilingual
case, such as code-switching ASR [19], [20], [21]. In this
paper, our ASR system is a multilingual ASR system, which
is instead built with 8 accented English corpora. Besides,
different from code-switching ASR, our ASR system is trained
with utterances with only single accent, which is beneficial
to utterance-based accent recognition. For accent recognition,
the goal is to classify speaker’s accent according to their
pronunciation peculiarity. One can perform the task using
speaker or gender identification method, such as i-vector [10],
x-vector [11] or End-to-End (E2E) neural network classifier
based methods [12], [22].

Since E2E attention-based framework becomes popular,
multilingual ASR is getting much simpler as the number
of the grapheme-letters/characters for each language is quite
limited (e.g. English has only 26 letters). One can simply
merge the grapheme-letters/characters of different languages
as recognition output. For instance, it is reported a 50-language
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multilingual ASR system is built with E2E method in [7].
However, it is only focused on speech recognition task. Also
using E2E framework, [23] proposed a method to improve
multi-dialect speech recognition performance by using dialect
information as an external input vector in the LAS ASR model.
For joint systems, [9] proposed a joint language identification
and speech recognition method on 10 different languages. Its
ASR results are impressive but far from the state-of-the-art
on individual languages. Besides, its language identification
results are not compared with conventional i-vector, x-vector,
or other E2E methods. Furthermore, [24] implemented the
same structure as [9] and investigated its performance on many
more languages.

Different from prior work, we employ DNN-HMM to
realize a joint speech and accent recognition system. The
framework is only a multilingual ASR system, by append-
ing grapheme with different accent identifier (we are using
position-dependent grapheme lexicon [3]). To be thorough,
we not only compare our ASR performance with conventional
monolingual DNN-HMM ASR system, we also compare our
accent recognition performance with x-vector-based classifier.
Besides, we also conduct a series of analysis on the proposed
methods under different scenarios.

III. JOINT SPEECH AND ACCENT RECOGNITION

Technically, we can think of each accent as different lan-
guage, hence given a normal English word, we make the word
and its phone labels different for each individual accent. We
then merge the accented data to train a joint multilingual ASR
system. From this perspective, not only can such an ASR
system perform speech recognition, it can also recognize the
accent.

During training, assuming word “hello” is from
British accent, our ASR lexicon should have an item
like “hello_BRT h_BRT_WB e_BRT l_BRT l_BRT
o_BRT_WB”, realizing a British accent-based “hello”,
that is represented as “hello_BRT” to differentiate with
“hello” from other accents. Here the “_BRT” is the accent
identifier, while “_WB” is word boundary grapheme identifier
as recommended in [3].

We have two methods to conduct joint recognition during
decoding. One is to assume our ASR system as a mono-
lingual system, but each word has different pronunciations,
denoted as “Mono-joint”. Let us use word “hello” as
example again, and one of its pronunciations in decod-
ing lexicon would be “hello h_BRT_WB e_BRT l_BRT
l_BRT o_BRT_WB”. By this means, we demonstrate word-
based accent encoding with the help of accent identifiers
at phone level. When recognizing speech, we output phone,
as well as word sequences. By simply counting the accent
identifiers for phone/word, we get the accent of the recognized
utterance. One of the drawbacks of the method lies in it cannot
encode the accent on utterance level as each word in the
utterance can be recognized as different accent. Therefore,
we propose another method, that is, not only is the phone
label different, the word label is also different, here we name

it as “Multi-joint”. In other words, the decoding lexicon
is the same with the training lexicon, and the ASR is a
multilingual ASR system. The benefit of this method is that it
can approximately realize utterance-based accent encoding as
the language model (LM) has no direct cross-accent n-gram
ever happened.

IV. DATA SPECIFICATION

The experimental data is from an accented English speech
recognition workshop[25], sponsored by DataTang Company
in China1. There are 2 challenge tracks, one is for accented
English speech recognition, and the other is for accent recogni-
tion. The data contains two parts. One is in-domain accented
English data, released by DataTang, including train, dev
and test sets specified by the organizer. There are 8 ac-
cented English data sets among train and dev sets, each
with ∼20 hours. The accents are American, British, Chinese,
Indian, Japanese, Korean, Portuguese and Russian respectively.
There are two extra accented English data sets on test set,
which are Spanish and Canadian (they are ignored when we
perform accent recognition). Table I reports the details of data
specification. For clarification, Figure 1 also plots the utterance
length distribution for the three data sets respectively. The
other is out-domain data which is 960 hours of Librispeech2.

All data are read speech. As will be shown in Section VI,
the WER is quite low for the ASR track. However, as is
shown in Figure 1, majority of utterance length is less than 6
seconds (Table I also reports that the average utterance length
is ∼4s) for the three data sets. Therefore, one can imagine
the accent recognition is rather challenging for such short
utterances.

TABLE I
DATA SPECIFICATION FOR THE ACCENTED ENGLISH DATA SETS

INCLUDING TRAIN , DEV AND TEST RESPECTIVELY

Train Dev Test
Total utts 124K 12k 18k

Length (Hrs) 148.51 14.50 20.95
Ave. word (per utt.) 9.72 9.66 9.00

Ave. second (per utt.) 4.29 4.35 4.15

V. EXPERIMENTAL SETUP

All the experiments are conducted with Kaldi.3 For DNN-
HMM ASR framework, the acoustic models are trained
with Lattice-free Maximum Mutual Information (LF-MMI)
criterion [26] over the Factorized Time Delay Neural Net-
work (TDNNf) [17]. The TDNNf is made up of 15 layers, and
each layer is decomposed as 1536x512x1536, where 512 is the
dimension of the bottleneck layer. To train the TDNNf, we also
perform two kinds of data augmentation (DA) methods, one
is speed perturbation (sp) (x3) [27], and the other is to add
four kinds of noise, such as white noise, music noise, babble
noise, as well as reverberant noise (x4). For baseline system,
the lexicon is phonetic lexicon with ∼21k word vocabulary.

1 https://www.datatang.com/INTERSPEECH2020
2 http://www.openslr.org/12/ 3 https://github.com/kaldi-asr/kaldi
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TABLE II
SPEECH WER (%) AND ACCENT RECOGNITION ACC (%) RESULTS OF THE PROPOSED JOINT RECOGNITION METHODS ON DEV SET.

Method AVE (WER%) US UK CHN IND JAP KOR POR RUS

Speech
Recognition

TDNNf 7.68 8.71 8.87 11.08 8.67 6.08 6.87 6.45 4.47
Mono-joint 8.66 9.46 10.31 12.67 9.02 6.98 7.28 7.43 5.36
Multi-joint 8.63 9.29 9.71 12.71 9.16 6.68 7.36 7.51 5.30

AVE (ACC%)

Accent
Recognition

x-vector 64.86 55.05 88.24 55.44 75.25 55.28 56.04 79.58 52.91
Mono-joint 61.70 42.64 88.43 63.76 86.82 42.54 56.65 58.97 54.95
Multi-joint 63.19 44.53 88.48 66.31 87.66 43.88 58.71 61.51 55.63
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Fig. 1. Utterance length(s) distribution for accented English data sets that are
train, dev and test respectively

For the multilingual ASR, the lexicon is position-dependent
grapheme lexicon but with as many as eight times of the
vocabulary for either two methods as mentioned. From our off-
line experiments, the grapheme lexicon yields slightly worse
results, compared with phonetic lexicon. We stick to use
it because we want our TDNNf system to have the same
advantage with E2E ASR system, that is, free of lexicon
modeling, which is especially useful for multilingual ASR
tasks. For the two methods, we build two sets of tri-gram
language models (LMs) for decoding respectively. One is
monolingual LM, and the other is a multilingual LM, labelling
each word with different accent identifiers. Additionally, we
also perform x-vector experiment for accent recognition as a
contrast, while we choose logistic regression as the classifier.
We find it consistently yields better results compared with
PLDA [28] method in our case. To train the x-vector extractor,
we follow the configuration of [11], and the resulting x-vector
dimension is 512.

VI. RESULTS

Table II reports the speech recognition and accent recogni-
tion results of the proposed methods, in contrast with conven-
tional TDNNf, and x-vector systems respectively.

From Table II, we observe the proposed methods achieve
worse ASR results compared with the baseline TDNNf system.
This is understandable, since for the “Mono-joint” method, we
have 8-times of pronunciations than the baseline system, yield-
ing more confusion to the lexicon. Besides, the pronunciation
difference for each specific accent is not fully considered. On
the other hand, the TDNNf output of the “Multi-joint” method

has 8-times of senones to handle in theory, compared with the
baseline TDNNf system. Such a big senone-number output is
difficult to obtain by decision-tree-based clustering method,
and it is also hard to learn.

For the accent recognition results in Table II, the proposed
methods also yield worse accent recognition results, compared
with x-vector method. However, the advantage of the proposed
method lies in two aspects. First to perform accent recognition,
it is easier for the proposed method to exploit out-domain
data (Librispeech here) without accent label, compared
with x-vector method. Such an advantage will be shown in
Section VII-B. Secondly, it can perform both speech and
accent recognition tasks simultaneously.

Besides, from Table II, we observe the best WERs are
from Russian (RUS) and Japanese (JAP) accented speech
respectively, while the worst of all is from Chinese (CHN)
accented speech, which is followed by British (UK) accented
speech. For the accent recognition, the best accuracy is from
British accent (UK), and after that it is Indian accent (IND),
while the worst is American accent (US) which is followed
by the Japanese accent (JAP). One thing worth a note is
that the proposed method outperforms the x-vector method
with a big margin for the Chinese (CHN) and Indian (IND)
accented speech respectively, while it performs much worse
on the American (US), Japanese (JAP) and Portuguese (POR)
accented speech. Furthermore, comparing speech recognition
with accent recognition results in Table II, we note that better
WER does not necessarily mean better accent recognition
accuracy. For instance, for the Korean (KOR), Japanese (JAP),
and Russian (RUS) accented speech, the ASR results are
significantly better than the ones of remaining accents, their
accent recognition results are much worse.

Finally, Table II shows that the proposed “Multi-joint”
method outperforms the “Mono-joint” method for both speech
and accent recognition results respectively. This suggests
utterance-based accent encoding is superior than the word-
based accent encoding at least for accent recognition.

VII. ANALYSIS

A. Joint accent acoustic models

For the above experiments, we merge 8 accented English
data to train the joint TDNNf acoustic models, and each accent
has its own phone set. The TDNNf models have ∼8.8k outputs
(tied-states/senones) in total. As a result, we only have about
1k outputs for each accent on average. We are curious that
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TABLE III
CROSS-ACCENT RECOGNITION CONFUSION ON DEV SET(%)

                   Recognition

Ground Truth
US UK CHN IND JAP KOR POR RUS

US 37.45 27.77 0.07 0.00 0.35 1.82 8.06 24.47

UK 2.72 92.66 0.13 0.00 0.76 0.00 0.38 3.35

CHN 7.11 0.47 68.12 0.00 16.17 2.75 0.00 5.37

IND 2.89 0.00 0.30 82.79 0.30 0.00 13.63 0.08

JAP 0.00 0.00 0.67 0.00 49.46 27.96 0.00 21.91

KOR 0.21 0.27 3.36 0.00 24.42 65.43 3.09 3.22

POR 1.30 4.76 2.23 0.12 2.66 1.36 72.77 14.79

RUS 0.31 4.15 4.64 0.00 0.00 0.12 33.91 56.87

TABLE IV
PERFORMANCE REPORT WITH DIFFERENT TDNNF OUTPUTS

(TIED-STATES/SENONES), DIMENSION OF THE FINAL BOTTLENECK LAYER
IS FIXED AT 512.

#PDF Mono-joint Multi-joint
WER% ACC% WER% ACC%

4.3k 8.78 60.27 8.78 61.68
8.8k 8.66 61.70 8.63 63.19
14.6k 8.76 60.97 8.84 61.99
21.8k 8.76 60.97 8.80 62.28

if bigger outputs yield better results. Table IV reports our
experimental results. From Table IV, bigger outputs of TDNNf
don’t bring performance improvement on both tasks. We also
report the results of a smaller output of 4.3k where we only
have less than 6 hundred output on average for each accent,
and get a slightly worse performance compared with those of
larger scales of outputs. Our conclusion is that TDNNf is not
sensitive to the tied-state number (perhaps once it is satisfied
with a minimal tied-state number). This even suggests we can
use TDNNf to train the joint multilingual models with more
languages in future.

B. Transfer Learning

To employ out-domain data, we adopt transfer learning (TL)
method [29], [30], [31], with Librispeech as the out-
domain data. We start with a TDNNf model trained with
overall out-domain and in-domain data. We then fine-tune the
model with only the in-domain accented data. Figure 2 plots
the curves of the recognition accuracy versus learning rate
factor, with 3 epochs. From Figure 2, we observe consistent
improvements on both tasks with bigger learning rate factor
(≥0.5).

Table V reports the results of transfer learning, and RNNLM
rescoring. From Table V, we see that transfer learning is
effective on both speech and accent recognition performance
improvement, even outperforms x-vector (64.86%) on accent
recognition. However, RNNLM rescoring only improves ASR
WERs, while it yields no accuracy improvement on AR task
at all. These suggest AR accuracy is closely related with
the performance of the underlying acoustic model (AM), but
less affected with LM. For AM, different acoustic senones
are trained with different accented speech data, as a result it
has capability to differentiate accents. However, for the LMs
(RNNLM included), they are trained with overall transcripts,

and consequently have no accent discriminative capability on
either word or utterance level.
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Fig. 2. TL performance versus learning rate factor

TABLE V
RECOGNITION RESULTS WITH TL(LR=0.8) AND RNNLM RESCORING

FOR DEV AND TEST SETS

Method WER(%) ACC(%)
dev test dev test

Mono-joint 8.66 10.31 61.70 61.01
+Transfer Learning 8.31 9.83 64.18 63.70
+RNNLM Rescoring 6.93 8.28 64.29 62.66

Multi-joint 8.63 10.35 63.19 63.75
+Transfer Learning 8.17 9.74 65.53 66.68
+RNNLM Rescoring 7.05 8.40 65.35 66.40

C. Cross-accent recognition confusion
We are also interested in how each specific accent is

mistakenly recognized as another accent, that is, cross-accent
recognition confusion pattern. Table III shows overall accent
recognition confusion results. There are several patterns worth
our notice. First, for British and Indian accents, there are minor
in confusion with other accents. The most confusion counter-
parts for British and Indian accents are Russian and Portuguese
ones, with 3.35% and 13.63% respectively. Second, Japanese
and Korean accents, as well as Portuguese and Russian accents
are mutually confused heavily. For instance, Japanese accent
has 27.96% been miss recognized with Korean accents which
in return has 24.42% been miss recognized with the Japanese
accent. Finally, American accent is widely “overlapped” with
other accents, particularly 27.77% with British, and followed
by Russian (24.47%), and then Portuguese (8.06%) accents
respectively.

D. Accented-word characteristics
Except for accent confusion, we are also curious about

if some words have stronger accented characteristics than
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TABLE VI
EXEMPLAR WORDS WITH HIGHEST AND LOWEST ACCENT RECOGNITION

ACCURACY RESPECTIVELY

Top 10 Exemplar words Ave. Length

most accurate
temperature, strong, feature,
students, adapted, voyage,
branches, value, plans, blind

7.3

least accurate
fake, key, finish
minute, England, ocean,
orders, sick, either, wash

5.4

others. In other words, if a word appears in some accent and
it is correctly recognized in terms of accent recognition in
majority of times, we think such a word has stronger accented
characteristics. Table VI reveals some exemplar words in terms
of highest and lowest accent recognition accuracy. We can see
from Table VI, longer words or words with multiple syllables
generally yield better accent recognition results. This seems
to be agreed with our intuition.

VIII. CONCLUSIONS

In this paper, we proposed a joint multilingual approach
to realizing speech and accent recognition simultaneously
using the DNN-HMM framework. On an 8-accent English
speech recognition data set, we demonstrated the effectiveness
of the proposed methods on both speech recognition and
accent recognition. In addition, we adopted transfer learning
to fully exploit out-domain data to boost the performance.
We found that transfer learning is beneficial to the perfor-
mance improvement for both tasks, particularly for the accent
recognition task. We also tried RNNLM rescoring method,
and achieved better WER as expected however no accent
recognition improvement. This suggests accent recognition is
more dependent on AM and less on LM for our data set.
Besides, we also analysed cross-accent recognition confusion,
as well as accented-word characteristics preliminarily, which
are yet to be further studied in future.
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