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Abstract—Zero-shot slot filling methods are proposed to tackle
the problems of adapting to new domains with unseen slots. Due
to lacking share information across domains based on semantic
slot descriptions, the challenge in zero-shot slot filling is handling
the unseen slots that are less similar to the training slots semanti-
cally. Since people utilizes not only explicit semantic information
as estimation cues but also implicit semantic relations, this study
attempts to find implicit sematic relation cues between slots
and values to tackle unseen slots in zero-shot slot filling. We
speculate that the inference paths between slots and values may
be one of the implicit semantic relation cues and then investigated
an amount of inference paths in the SnipsNLU dataset via the
knowledge graph. The inference relation paths (IRPs) are found
to implicitly build up semantic relations between slots and their
values. Accordingly, we proposed a method to utilize the IRPs
for zero-shot slot filling. Experimental results showed that the
proposed method outperformed a strong baseline by 3.61 in
terms of F1 score and achieved an improvement rate of 40% for
semantically dissimilar unseen slots. These results demonstrate
that the proposed method can provide effective share information
for handling unseen slots.

I. INTRODUCTION

Building task-oriented dialogue systems has become a hot
topic in research and industry [1]. Spoken language under-
standing (SLU) is a key and intermediate component that
connects input utterances to subsequent modules in dialogue
systems. Therefore, the performance and generalization ca-
pacity of SLU affect the performance of the whole dialogue
system.

Slot filling is an indispensable procedure in SLU that aims
to extract semantic components from user’s utterances and fill
them into corresponding slots. Slot filling is usually treated
as a sequence tagging task in practice, in which the inside-
outside-beginning (IOB) tags are used to indicate the slot
filling parts in the utterance. Figure 1 shows an example of slot
filling for a given utterance *Will it be windy at 4 pm in NY’.
As shown in Figure 1, the slot filling procedure predicts IOB-
slot tags for each token in the utterance, these tags indicate
that the 'windy’, 4 pm’ and 'NY’ are filled into the slots
condition description, time range and state, respectively.

Utterance: Will windy at 4 pm in  NY
|

|I0B-slot tags: O 6 6 B-condition_description E)B-timeRange I-time‘Range O B-state

it be
|

Slots: condiition_description : windy
timeRange : 4 pm
state: NY

Fig. 1. Example of slot filling with IOB tags

Slot filling models have been remarkably improved due to
deep learning [2, 3, 4, 5, 6]. However, the existing systems
usually require to add some new domains for extending topics
in practice. This demands a large amount of labeled data for
adapting a slot filling model to new domains with typical
supervised approaches, which is not always efficient and

1056

feasible. To handle unseen slots in new domains and boost the
domain adapting, zero-shot approaches have been proposed
[7, 8, 9, 10]. Zero-shot slot filling aims to train a model on
source domains and adapt the model to handle target domains
directly. Early works [10] used similarity representations to
avoid retraining models for domain adaption. Recently, the
concept tagger model (CT) [11] was proposed as a framework
to predict slot spans within utterances for each slot with
semantic slot descriptions. The zero-shot adaptive transfer
network (ZAT) [13] further added an attention mechanism to
improve the model generalization. Shah et al. [14] proposed
a method to learn a model with slot descriptions and example
slot values, which showed the usefulness of the example
values.

In zero-shot slot filling, the prediction for each slot relies
on two types of information: the context information from
utterances and the slot information based on slot descriptions.
The context information is not controllable since it depends
on users or given data. Therefore, previous works mainly
rely on semantic descriptions of slots for providing share
information across domains, which enables the zero-shot slot
filling model to deal with unseen slots in target domains. This
kind of model can handle a slot in target domains if the slot is
semantically similar to some others in the source domains. As
pointed out by Bapna et al. [11], however, a method relying
on conventional slot descriptions alone cannot deal well with
the unseen slots that are less semantically similar to any other
slot in the source domains due to lacking share information.

To find share information to tackle the problem mentioned
above, we move our sights to how people estimate objects
with less semantic similarity. In practice, people often use
many implicit semantic relations as estimation cues, such as
we can infer the situation of a golf ball from the kind of the
golf clubs that professional golfers are using. The club here is
an implicit sematic relation carrier, providing the information
for estimating the ball’s situation. Inspired by this, we attempt
to find out a semantic relation carrier that can provide the
semantic relation information between slots and their values
and try to utilize such a semantic relation carrier to estimate
unseen slot values in zero-shot slot filling. We speculate
the inference path between a slot and its values might be
an implicit semantic relation carrier such as the functions
of different golf clubs in a golf game. In this study, our
investigation proved the speculation. Accordingly, we propose
a method to utilize the inference relation paths (IRPs) between
a slot and its values to describe the slot information and then
to tackle unseen slots in zero-shot slot filling.

The contributions of this study are as follows: (1) We found
out that the IRPs implicitly carry semantic relations between
slots and their values and function as additional semantic
features for slots. (2) We proposed a method to utilize the IRPs
as slot descriptions into zero-shot slot filling task. This enables
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semantic relations between slots and values. (3) The proposed
method improves the zero-shot slot filling performance more
than the leading baseline, especially on the unseen slots with
less semantic similarity to the training slots.

Section 2 describes the IRPs in the knowledge graph. Sec-
tion 3 investigates the sematic function of the IRPs between
slots and their values in a widely used dataset. Section 4
describes the model construction and the experiment setting.
Section 5 gives the results, and Section 6 concludes the paper.

II. INFERENCE RELATION PATHS

In this study, we try to find out implicit semantic relation
cues between slots and values to tackle unseen slots in zero-
shot slot filling. Since the inferences are often utilized for
obtaining semantic relations between the intent and target,
analogically, the inference paths between slots and values may
have implicit semantic relations. The necessary components
to describe the inference between slots and values are the
knowledge of the entity and its relations. Therefore, we focus
on the descriptions of the entity knowledge and the relations
of entities within the knowledge graph.

In the knowledge graph, entities are described as nodes,
the edges connecting entity nodes represent the relations
between entities. Generally, these relations are pre-defined
rules of inference mappings in the knowledge graph, such
as ’instance of” and ’subclass of’. Entity nodes are usually
used as explicit semantic information in previous works [20,
21] but the semantic information carried by relations are not
paid much attention to. To preliminarily verify our speculation
that the inference paths between slots and their values could
carry implicit semantic relations, we first extract a number of
inference paths from a multi-domain dataset SnipsNLU [12]
via large-scale knowledge graph Wikidata. Fig. 1 shows two
examples of the inference paths from values to corresponding
slots through entity nodes and relations. One is from the value
’Pelham Bay Park’ to the slot "POI’; the other one is from
the value *Guernsey’ to the slot "country’.

From the inference paths in Fig. 1, we found that although
the entity nodes on the inference path are different, the IRPs
carried the same analogic reasoning. The figure demonstrates
that the same IRPs can correlate slots to the values by similar
semantic relations. For instance, in Fig. 1, the IRP [instance
of, subclass of, subclass of] correlates slots to the values
’Pelham Bay Park’ and ’Guernsey’, which represent place
names. Therefore, a certain IRP may implicitly correspond
to certain semantic information, correlating slots to certain
values. A statistical analysis is conducted in the following
section.

Value Siot
Pe lham Bay\nstamce of  subciass of geographicSUbCIaSS of

Park park location —* POl
instance of  subclass of political subclass of

Guernsey = state = territorial = country
entity

Fig. 2. Examples of inference paths from values to corresponding slots in the
SnipsNLU dataset

III. ANALYSIS FOR THE INFERENCE RELATION PATHS

To testify to the generality of an IRP carrying certain
semantic information implicitly, we analyze an amount of
IRPs between the slots and their values in a widely-used

corpus, the SnipsNLU datapat. | SnipsilHb &P | sP¥kY 0, Japan

domains with various slots, some of the slots describes entitie$
in the real world, such as ’city’ and ’album’. Some of the
slots describes concepts, such as ’genre’ and ’time range’. To
analyze IRPs in the SnipsNLU, we first build an ontology
containing available slots and their values for the SnipsNLU
dataset. We extract slots and corresponding values from the
annotation data of the SnipsNLU dataset and randomly select
up to 30 values for each slot to balance the values of each
slot. s. As a result, the ontology of the SnipsNLU contains
53 available slots out from the dataset, each of which has up
to 30 values.

Then we try to identify the entities of the 53 available slots
and their values in the ontology via Wikidata to obtain the
IRPs between slots and their values. Some slots cannot be
identified as entities directly, we explore the entities in the
knowledge graph with similar semantic meanings to the slots,
and then use the new-found entities as the slot entities for the
slots to extract IRPs in subsequent processing. For instance,
the slot ’served dish’ cannot be identified as an entity directly,
but we find that the entity ’dish’ has similar semantic meaning
to the slot ’served dish’, so we use the entity ’dish’ to extract
the IRPs for slot ’served dish’. Then, depending on whether
the slot value is an entity or not, we separate the IRPs into
two groups. (1) If at least one value of a slot can be identified
as entities in Wikidata, we manually extract the IRP with the
shortest inference steps from the slot entity to a corresponding
value entity. (2) For some slots, no corresponding values can
be identified in Wikidata. For instance, the values of ’playlist
owner’ are all possessive pronouns that could not be identified
to be entities. We set the IRPs as [instance of] between such
slots and their values. After this processing, the slots in Group
(1) have multiple kinds of IRPs corresponding to their values,
and the slots in Group (2) have only one kind of IRPs. Among
53 available slots in the ontology built for SnipsNLU, 46 slots
belong to Group (1) and 7 slots belong to Group (2).

For analyzing the extracted IRPs, we convert the values
corresponding to each IRP into vector representations by word
embeddings. Then we clarify the distributions of the IRP-
corresponded values in the semantic space. To explain the
distributions intuitively, we reduce their dimensions using the
t-distributed Stochastic Neighbor Embedding (t-SNE) algo-

10 4 1 o
1 Og
0
1 0000000 0 0
08 1 0005 %, 3
% o o 00
3 1 0 0
A . 0 00,00
0.6 - o0
1,1 1 2f 0 © 0
Y 2 o 0
S 2 311 1 8 &
< ‘-1 1 0
bl USRS g ¢
3 1 0
o 3
02d 333 2
: 333
3 333
3333
00 - )

00 02 04 06 08 10

0: [occupation, instance of, has instance]

1: [instance of, subclass of]

2: [instance of, has subclass]

3: [instance of, subclass of, subclass of, has subclass]

Fig. 3. Visualization example of value distributions in semantic space
corresponding to four IRPs
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t the four IRPs, referred to as paths 0 3. Specifically, path
0 is [occupation, instance of, has instance], path 1 is [instance
of, subclass of], path 2 is [instance of, has subclass], and
path 3 is [instance of, subclass of, subclass of, has subclass].
Accordingly, the paths can be treated as three groups: path
0, path 3, and path 1&2. Fig. 2 shows an example of the
value distribution of the four IRPs. In the Fig. 2, the values
corresponding to path 0, path 3, and path 1&2 are distributed
separately as three different clusters in the semantic space,
where the values corresponding to paths 1 and 2 are over-
lapped heavily since paths 1 and 2 can be regarded as the
same path since they have only one different step while other
steps are identical.. This confirms that the IRPs carries implicit
semantic information correlating the slot and its corresponding
values. Therefore, the IRPs can be regarded as semantic cues
that implicitly carry semantic relation information of slots and
their values. Similar to estimating the ball’s situation on the
basis of the golf club the professional golfer is using, we can
estimate the slot values on the basis of the IRPs. Therefore, the
IRP can be used to provide share information for estimating
unseen slot values.

Further analysis shows that the IRPs of each slot can
be grouped into several patterns for efficient utilization in
practice. For instance, the slot ’artist’ in the *AddToPlaylist’
domain has 30 corresponding values. Among them, 28 values
have the same IRP of [occupation, instance of, has instance]
to ’artist’, while the other 2 values have different IRPs to
“artist’, which is [instance of, subclass of, subclass of, has
part]. Accordingly, the IRPs of ’artist’ can be grouped into two
IRP patterns for efficient utilization. To investigate whether
or not the same IRP patterns exist in different domains could
provide share information across domains, for each domain,
we count the number of shared slot IRP patterns between that
domain and other domains and show them in Table I. Note that
these numbers do not reflect the amount of share information
provided by the IRP patterns since the effectiveness of share
information is task-dependent. In Table I, unseen and seen
show the number for unseen and seen slots in a domain,
respectively. One can see that for unseen and seen slots,
numerous identical IRP patterns exist in different domains.
The cross-domain IRPs provide share information in practice
for tackling unseen slots

TABLE I
THE SAME IRP PATTERNS AMONG SLOTS IN ALL DOMAINS IN SNIPSNLU
DATASET
Domains Unseen Seen
AddToPlaylist 5 7
BookRestaurant 28 17
GetWeather 8 10
PlayMusic 19 11
RateBook 4 7
SearchCreativeWork 0 14
SearchScreeningEvent 5 7

IV. EXPERIMENT

To utilize the IRP for handling unseen slots, we propose a
model to compliment IRP in zero-shot slot filling and conduct
experiments on a widely used dataset SnipsNLU.

A. Model construction

So far, predicting inside-outside-beginning (IOB) tags on
given utterances for each possible slot has been shown to be
suitable for zero-shot slot filling [11, 13]. The IOB prediction
indicates the spans within the utterance for the given slot. Our
model employs the same paradigm to predict IOB tags for
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Pattern Encoder
(MLP + softmax)
4

Utterance Encoder
(BiLSTM)

6

Utterance tokens

1|
Path Encoder (LSTM)

Semantic slot description
(Conventional slot description)

Slot-based IRP description

Fig. 4. Model construction utilizing slot-based IRP description for zero-shot
slot filling

each slot. Fig. 3 shows the structure of the proposed model.
The semantic slot description (conventional slot description)
denotes the mean of the slot tokens’ semantic representations
of a given slot. The utterance tokens mean the semantic
representations of the tokens in a given utterance. The slot-
based IRP description contains the IRP patterns of a given
slot. To obtain the representation for the specific relations
in the IRP patterns, we apply pre-trained knowledge graph
embeddings [15, 16, 17] to convert the specific relations in
the knowledge graph into vector representations. In this study,
we apply a TransE model [15, 18], which is pre-trained on
Wikidata, to obtain embedding vector representations.

In the model, we encode a given utterance using a bidirec-
tional long shot-term memory (LSTM) network. The output
of the utterance encoder at the i-th time step represents
the context information of the i-th token. For a given slot,
each IRP pattern in the slot-based IRP description provides
implicit semantic relation information for estimating how
context information is related to the given slot. To utilize the
implicit semantic relation information into the model, we use
an LSTM to encode the path of each IRP pattern separately.
The last hidden state of the path encoder is used as the path
encoding for the corresponding IRP pattern. Then the pattern
encoder takes the path encodings as inputs and uses a self-
attention mechanism to encode the path encodings into one
vector, such a vector represents the combining information
of all IRP patterns of the given slot. The self-attention
mechanism is computed as:

P = softmax(MLP(V))T .V 1

where V' is the path encodings of IRP patterns, M LP(-) is
a fully connected layer, softmax is the softmax function, T’
indicate the transpose of softmaxz(MLP(V)) and P is the
output of the pattern encoder. We concatenate the utterance
context information, the pattern encoder output P and the
semantic slot description .S as a general variable at each time
step ¢ and input it into the global encoder. In accordance with
the finding that the CRF layer is useful for sequence-related
tasks [12, 22], we use a conditional random field (CRF) layer
following a feedforward layer to take the output of the global
encoder as input and gives IOB tag predictions for the given
slot. The model final output for slot filling is the merge of the
spans indicated by IOB tags for all possible slots.

1058



Proceedifig&RPIIPK XHffal Summit and Conference 2021

In this study, we conduct the experiment on the SnipsNLU
[12] dataset. The SnipsNLU is a widely used dataset for
SLU containing 7 domains, each domain has 2000 utterances
collected from real applications. We train a model by setting
one domain as the target domain for zero-shot test and the
other six domains as source domains for training. In total, we
train seven models independently by setting each domain as
the target domain and evaluate the model performance one
by one. In the training process, data from source domains is
merged for training and validation, while data from the target
domain is used for the test alone. Models are trained with
utterances and possible given slots. The training instances are
divided into positive instances if the given slot occurs in the
utterance, or into negative instances if the given slot does
not occur. To make a fair comparison, we randomly sample
positive and negative instances in a ratio of 1:3, which is the
same as previous works [12, 13].

For comparison, CT [11] and ZAT [12] are used as base-
lines for evaluation. For embedding representations, we use
nnlm-en-dim128 word embeddings for word tokens and use
dim-100 TransE pre-trained embeddings for relation repre-
sentations. We set 200 hidden units for the utterance encoder
and the global encoder and set 128 hidden units for the path
encoder in our model. The cross entropy loss function is
used to compute the loss among IOB predictions. The Adam
optimizer is used for optimizing with learning rate of 0.0005.
We conduct the experiments three times and give an average
performance. The conlleval script [23] is used to compute the
slot F1 score for evaluation metrics.

V. RESULT AND DISCUSSION
A. Experiment result

Table II shows the results of different model performances
on each domain. The average is the average result over all
domains. The underlined numbers indicate the best result for
each domain. From Table II, one can see that our model
achieved better performance on most domains than all base-
lines, with an average F1 score 3.61 higher than that of the
strong baseline ZAT model. These results demonstrate that the
slot-based IRP descriptions are effective for providing share
information across domains in zero-shot slot filling.

TABLE II
RESULTS OF DIFFERENT MODEL PERFORMANCE FOR EACH DOMAIN OF
SNIPNLU DATASET

Domains CT ZAT Ours
AddToPlaylist 2894  37.66 44.62
BookRestaurant 2454 3405 34.62
GetWeather 4273 5582 60.05
PlayMusic 27.18 31.54 39.42
RateBook 20.56 1947 2028
SearchCreativeWork 6595 7346 74.29
SearchScreeningEvent | 24.57  33.05 37.04
Average 33.50  40.72 4433

B. Discussion

To clarify the effectiveness of slot-based IRP descriptions
on unseen and seen slots, we compare the F1 score on each
slot between the proposed method and ZAT and show the
comparison in the appendix. To measure how an unseen slot is
semantically similar to the slots in training domains, we define
the max cosine similarity between the semantic representation
of an unseen slot and the semantic representation of the slot
in training domains as e max semantic similarity (MSS). The
level of MSS reflects that the training domains can provide

share information for estimat'lqg 1h73 B‘&?@ﬁﬂle{' %Qef dekg,o Japan

target domain on the basis of semantic representations in someé
extent. On the basis of the value of the MSS, we divide unseen
slots into two categories: the low-MSS unseen slot (MSS<0.5)
and the high-MSS unseen slot (MSS>0.5). We compare the
F1 scores on slots in each category between the proposed
method and ZAT.

Fig. 4 shows sector diagrams of the comparison between
the proposed method and ZAT. The blue parts indicate the
ratio of the slots that the proposed method performed better
(Rours), while the orange ones show that ZAT performed bet-
ter (Rzar). To evaluate the performance of both methods, we
introduced an improvement rate R;,,, as following equation,

Rimp = Rours — Rzar 2)

Seen slot

Low-MSS unseen slot| High-MSS unseen slot

mOurs WZAT

Fig. 5. Comparison of different methods on different slot categories

From the sector diagrams, one can see that the improvement
rates are 40% for low-MSS unseen slots, 28% for seen slots,
and 18% for high-MSS unseen slots. These results confirm
that the slot-based IRP descriptions provided effective share
information across domains for handling both unseen and
seen slots, especially for the unseen slots with less semantic
similarity to the slots in source domains. For the high-MSS
unseen slots, the proposed method has a relatively smaller
improvement over ZAT. The reason probably is that we simply
utilized the mean of slot tokens’ semantic representations
as semantic slot descriptions in our model, which is not as
exquisite as the semantic slot descriptions used in ZAT. To
further improve the generalization of a zero-shot slot filling
model for estimating unseen slots, our future work is to
incorporate the proposed slot-based IRP descriptions with
elaborated semantic slot descriptions.

To clarify the effectiveness of slot-based IRP descriptions
on different types of slots, we further compare the F1 score
on different slot types between the proposed method and ZAT.
We divide slots into entity-type slots and abstract-type slots
based on semantic meanings the slots describe. The entity-
type slot describes entities or existence in the real world, such
as ’album’ and ’city’. The abstract-type slot describes concept
semantic meaning, such as ’genre’ and ’time range’.

Fig. 5 shows sector diagrams for a comparison. From the
sector diagrams, one can see that the improvement rates
are 60% and 50% for unseen and seen entity type slots,
respectively, and 6% and 20% for unseen and seen abstract-
type slots, respectively. These results demonstrate that slot-
based IRP descriptions provide share information effectively
on handling entity-type slots. Unlike that the entity relations
obtained from the commonsense knowledge graph, abstract-
type slots are not so effective to have the inference path. To
deal with abstract-type slots in zero-shot slot filling more
effectively, our future work is to utilize concept knowledge
graph to describe abstract-type slots.
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DESCRIPTIONS ALONE; CONVENTIONAL METHOD SHOWS THE MODEL PERFORMANCE USING CONVENTIONAL SLOT DESCRIPTIONS ALONE

Domains (IRP?éz)liI\:zsteilonal) IRP alone  Conventional method
AddToPlaylist 44.62 43.72 37.93
BookRestaurant 34.62 12.42 33.56
GetWeather 60.05 35.72 59.32
PlayMusic 39.42 22.72 30.16
RateBook 20.28 6.92 18.80
SearchCreativeWork 74.29 33.11 68.08
SearchScreeningEvent 37.04 12.57 33.36
23.88 40.17
AVER 44.33 (-20.45) (-4.16)

Unseen entity-type slot Unseen abstract-type slot

80%

Seen entity-type slot Seen abstract-type slot

®QOurs WZAT

Fig. 6. Comparison of different methods on different types of slots

C. Ablation study

We conduct ablation experiments to clarify the effectiveness
of the IRP descriptions and the conventional slot descriptions
in our model. To do so, we train ablation models in the same
way as described in the experiment setting and compare the
model performance. The ablation models are trained using
IRP descriptions alone and conventional slot descriptions
alone. Table III shows the results of the proposed method
and the ablation models. From Table III, one can see that
without the explicit slot information, using IRP descriptions
alone can achieve 23.88 in F1 score on average, which is
over the half of the slot F1 score of the conventional model
using explicit slot descriptions. This result demonstrates that
the IRPs carry implicit relations between slots and their values
and can provide share information across domains for zero-
shot slot filling. The results also show that adding IRPs to the
conventional model significantly improves the model perfor-
mance by 4.16 in F1 score. These results demonstrate that the
IRP slot descriptions and conventional slot descriptions have
complementary effect on zero-shot slot filling.

VI. CONCLUSION

In this study, we analyzed the inference relation paths
(IRPs) between slots and their values and found that the IRPs
implicitly carry certain semantic relations, which function
as additional sematic features for a slot. We implemented
the IRP in a zero-shot slot filling model to tackle unseen
slots. Experimental results demonstrated that the slot with IRP
descriptions can provide effective share semantic information

across domains for dealing with the unseen slots. The pro-
posed method outperformed the strong baseline ZAT model in
terms of both unseen and seen slot filling. The future work is
to utilize the proposed slot-based IRP descriptions with more
elaborated semantic slot descriptions and utilize concept-
based knowledge graph to improve the model generalization
on handling various unseen slots in zero-shot slot filling.
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Table A shows the comparison results of ZAT and the
proposed method on each slot in different domains. The slots
with **’ are unseen slots. The MSS of unseen slots indicate the
max slot similarity that described in the section 5.2. According
to the definition of the MSS, only unseen slots have MSS.
The type shows the slot type, ’E’ means the slot is an entity-
type slot, A’ means the slot is an abstract-type slot. The
Domain/Slots indicates each domain and slots in the domain.
The slot F1 score shows the comparison result of the ZAT
model and the proposed method.

TABLE A
COMPARISON OF DIFFERENT METHODS ON EACH SLOT

MSS of unseen slots | Type | D in/Slots Slot F1 score
AddToPlaylist ZAT Ours
- E artist 47.14 5547
0.73 E entity name* 8.75 9.26
- A music item 84.06  86.75
- E playlist 3175  47.14
0.72 A playlist owner* 0.43 0.00
BookRestaurant
- E city 66.64  68.96
- E country 69.81 83.92
0.35 A cuisine* 0.00 0.26
0.45 E facility* 232 0.68
0.65 A party size description® 2.46 0.00
0.49 A party size number* 0.06 0.00
0.68 E poi* 4.09 3.93
0.8 E restaurant name* 1630  18.45
0.69 A restaurant type* 1.92 0.08
0.32 E served dish* 2.01 7.50
- A sort 30.16 14.73
- A spatial relation 68.09  60.68
- E state 84.13 8847
- A timeRange 4533 53.95
GetWeather
- E city 63.38  70.74
0.65 A condition description* 0.28 0.00
0.42 A condition temperature™ 0.00 4.39
- E country 5252 71.12
0.62 A current location* 0.00 0.19
0.68 E geographic poi* 7.61 9.19
- A spatial relation 64.83  77.08
- E state 79.95 73.48
- A timeRange 83.78  82.76
PlayMusic
0.62 E album* 0.62 8.15
- E artist 5749 6756
0.52 A genre* 3.55 2.82
- A music item 61.56  69.76
- E playlist 6.60 9.37
0.44 E service* 3.74 15.10
- A sort 41.27  46.14
0.35 A track® 1.14 0.64
0.39 A year* 0.08 8.37
RateBook
0.23 A best rating* 0.00 0.00
- E object name 4525 3531
0.69 A object part of series type* 0.77 1.40
0.65 A object select* 0.00 18.84
- A object type 61.01 43.95
0.45 A rating unit* 0.42 3.34
0.4 A rating value* 1.53 10.28
SearchCreativeWork
- E object name 89.30  87.08
- A object type 40.06 51.46
SearchScreeningEvent
0.8 E location name* 37.76  43.80
0.72 E movie name* 4041  40.92
0.65 A movie type* 2.63 15.61
0.9 A object location type* 21.25 1475
- A object type 0.08 0.00
- A spatial relation 65.81 7435
- A timeRange 84.24  83.76
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