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Abstract—Spoken language understanding (SLU) has switched
from pipeline approaches to end-to-end (E2E) ones recently.
For most E2E approaches, neural networks are adopted to
extract embeddings from the audio signals directly for final
intents prediction. In this paper, we explore this method for
intent classification on Fluent Speech Commands (FSC) dataset,
where intents are formed as combinations of three slots (action,
object, and location). The information of different slots will be
entangled with each other in the extracted embeddings, which
sometimes brings about errors in the prediction of the current
slot. To address this problem, we propose partial disentangled slot
embedding (PDSE) method through adversarial training. Results
show that the proposed method can achieve an error rate of
0.53%, which outperforms the baseline with over 35.3% error
rate reduction.

Index Terms—end to end, spoken language understanding,
disentangled embedding.

I. INTRODUCTION

Spoken language understanding (SLU) systems aim to infer
the intents of spoken utterances,which have attracted very
much attention in recent years. Most state-of-the-art SLU
systems involve two major sub-systems [1,2]. The first system
is an automatic speech recognizer (ASR), whose responsibility
is to transcribe the spoken utterances to texts. The second one
is an intent detection system based on the transcribed texts.
Since speech recognizers will inevitably make some mistakes
during decoding, it is difficult for an intent detection module
to yield correct intent from erroneous ASR outputs [3,4,5].
With the widespread of end-to-end (E2E) methods in pattern
recognition, the end-to-end SLU recently receives attention as
a promising research direction for better intents prediction.

A natural approach to deal with E2E SLU is to use deep
neural networks (DNN) to encode the variable-length acoustic
signal (or human-designed features) into fixed-dimension em-
beddings. Lugosch et al [6] uses a stack of multiple recurrent
neural network (RNN) layers to encode the variable-length
utterances into fixed-dimension embeddings which are fed
to an intent classifier. Transformer [7] which adopts non-
recurrent self-attention is also used as the encoder to deal with
E2E SLU [8]. Chen et al [9] feed the softmax probabilities
over graphemes produced by a pre-trained acoustic model
(AM) component to the subsequent SLU component to predict
the intents of the utterances. In this paper, we employ the
Conformer [10] as the backbone network, which can be looked
on as an update version of Transformer with combination of

self-attention and convolution.

To further improve the performances, pre-training strategies
have been applied in SLU systems. Lugosch et al [6] pre-
trains the lower RNN layers with ASR targets (words and
phonemes) to provide better feature to the subsequent RNN
layers. Following [6], Wang et al [11] first pre-trains the
AM component with ASR targets, specifically phonemes, then
applies a BERT-like approach to pre-train the subsequent SLU
component which takes the phoneme posteriors output by the
AM component as input.

For most SLU tasks, the intent of a spoken utterance is
considered as a tuple of slots [12]. The SLU systems are
expected to predict the intent based on the value of each slot,
so SLU can also be regarded as a multi-label classification
task [13]. E2E SLU systems usually squeeze the related
information into an embedding for each slot [12], which
is fed to the corresponding classifier to predict the value.
As for each slot embedding, there exists the information of
other slots, sometimes the information of other slot helps to
predict the value of the current slot [12], and sometimes the
information of other slot covers the information of the current
slot, which results in errors for the prediction of the current
slot. It is a straightforward idea to decouple the information of
different slots, and disentangled embedding has been explored
in various domains, such as speaker verification [14,15], face
recognition [16,17] and so on.

In this paper, we propose a partial disentangled slot embed-
ding (PDSE) method which leverages disentangled embedding
on the slot embedding. Different from conventional methods
that use whole slot embedding to conduct disentanglement, we
only use a continuous portion of the slot embedding to conduct
disentanglement. While in the inference stage, the whole slot
embedding is used to predict the slot value. We evaluate the
proposed approach on the public Fluent Speech Commands
(FSC) dataset. The proposed PDSE can obtain an error rate
of 0.53%, which outperforms the baseline system with over
35.3% error rate reduction.

The rest of this paper is organized as follows. Section II
introduces our baseline E2E SLU system. Section III provides
detailed description of the proposed PDSE method. Section
IV presents the experimental setup and results. Finally, the
discussion and conclusion are presented in Section V.
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II. BASELINE E2E SLU SYSTEM

We use a Conformer-based SLU system as our baseline, as
depicted in Fig.2.

A. Conformer

Conformer is proposed for ASR [10], which combines self-
attention with convolution in a cascading way. The architecture
of a Conformer block is shown in Fig.1. As the figure shows,
the Conformer block has a macaron-like architecture, where
the multi-head self-attention module and the convolution mod-
ule are sandwiched by two feed-forward modules with half-
step residual connections.

Feed Forward Module
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Feed Forward Module
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Convolution Module
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Fig. 1: The architecture of a Conformer block.

B. Baseline SLU system

We carry out SLU on the Fluent Speech Commands (FSC)
dataset, whose intents are formed as combinations of three
slots (action, object, and location). The baseline system is
mainly composed of four components, an encoder, an action
decoder, an object decoder and a location decoder, as depicted
in Fig.2. Most of the components are composed of the con-
former blocks.

The encoder starts with a Convolution Subsamping module
which is followed by a linear layer and a dropout layer.
Then a stack of multiple Conformer blocks is deployed after
the dropout layer. We set a decoder for each slot to predict
the corresponding slot value. As for the action and location
decoders, we first employ Conformer blocks to learn action-
and location-specific information from the output of the en-
coder respectively. Then a max-pooling layer is applied to
squeeze the information into an embedding which is fed to
the subsequent linear layers to predict the values. The object
decoder has same architecture with the other two decoders
except that the Conformer block is replaced with a CNN block
for better performace. The CNN block has same architecture
with the Conformer block except that the multi-head self-
attention module is removed. The system aims to accurately
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Fig. 2: The architecture of the baseline system.

predict the value of all slots, therefore the overall loss is the
summation of the three slot-specific Cross Entropy losses,
which is represented as:

LCE = La + Lo + Ll (1)

Where La , Lo and Ll are the Cross Entropy losses for action,
object and location classification respectively,LCE represents
the summation of all these losses.

III. PROPOSED APPROACH

A. Partial Disentangled Slot Embedding (PDSE)

The baseline system in Fig.2 can extract discriminative
embedding for each slot on the FSC dataset. However, the
information of action and object are entangled with each
other in the extracted slot embeddings. We employ partial
disentangled slot embedding (PDSE) method on the action
decoder and the object decoder of the baseline system to obtain
refined embeddings. Taking the object decoder for example,
the architecture of the object decoder with the proposed PDSE
is shown in Fig.3. We select the first quarter of the object
embedding as the PDSE, denoted as eD, which is the red part
of the embedding shown in Fig.3, For the object decoder with
PDSE, two extra classifiers are deployed in the object decoder,
the slot-specific classifier Csp and the adversarial classifier
Cadv , both of which take eD as input. Csp is to predict the
value of object based on eD,we adopt cross entropy loss for
Csp, which can be written as:

Lsp = CE (yo, softmax (Csp (eD))) (2)

Where yo is the true label of object and CE() represents cross
entropy function.
Cadv is to predict the value of action based on eD , while

the encoder and the object decoder are trained to enable eD
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Fig. 3: The architecture of the object decoder with PDSE.

fool the Cadv through adversarial learning [18], so that Cadv

outputs the same probability over each action class. Hence, the
information of action in eD is removed. Similarly, we adopt
cross entropy loss to train Cadv by:

Padv = softmax (Cadv (eD)) (3)

La
adv = CE (ya, Padv) (4)

Where Padv is the softmax probability over action predicted
by Cadv , ya is the true label of actions, La

adv is the cross
entropy loss for action classification. Note that the gradient of
La
adv only propagates back to Cadv in model training.
Since the encoder and the object decoder are trained to

enable eD fool the Cadv , the target distribution should be
uniform over all action categories, which equal to 1

Na
, and

Na is the total number of all action categories. We represent
the target distribution as Qavg =

{
1
Na
, 1
Na
, · · · 1

Na

}
, and adopt

Kullback-Leibler (KL) divergence as the loss function which
is calculated by:

Le
adv =

∑
Qavg(i) log

(
Qavg (i)

Padv(i)

)
(5)

Note that the gradient of Le
adv doesn’t update any parameters

of Cadv . By combining La
adv and Le

adv ,the information of
action in eD is eliminated.

During the inference stage, both Csp and Cadv are aban-
doned, the whole object embedding is fed into the original
object classifier to predict the value of object, which utilizes
the information of action meanwhile preserves the information
of object from being covered by the information of action.

As for the action decoder, we select the first half dimension
of the action embedding as the partial disentangled action
embedding. Similar with the object decoder, there are two
extra classifiers added in the action decoder, and the PDSE
in action decoder is not expected to contain the information
of object.

B. Total Loss

In summary, the system with the proposed PDSE involves
multiple losses that consist of the essential intent prediction
loss LCE , the loss Lsp, the adversarial losses La

adv and

Le
adv . Therefore, the overall loss with a weighted combination

of them is as below:

Ltotal = LCE + αLsp + β (La
adv +Le

adv) (6)

Where α, β are the weight parameters and set as α = 0.1
, β = 0.1 in our experiments. Lsp is the summation of the
Lsp in the object decoder and the action decoder, La

adv is the
summation of the La

adv in the object decoder and the action
decoder, Le

adv is the summation of the Le
adv in the object

decoder and the action decoder. The overall goal is to minimize
Ltotal. As mentioned above, the PDSE system is trained in a
way of adversarial learning, La

adv is minimized alone while
all other losses are minimized simultaneously.

IV. EXPERIMENTS

A. Dateset

We use the publicly available Fluent Speech Commands
(FSC) dataset to evaluate our proposed approach. The dataset
consists of a number of 16KHZ single-channel spoken ut-
terances stored in the format of .wav, each of which is a
speech command that might be used for smart home or virtual
assistant applications. The dataset contains about 19 hours
of speech with a total of 30043 spoken utterances from 97
different speakers. Each utterance is labeled with three slots:
action, object, and location, and there are total 6, 14 and 4
unique values for action, object and location respectively. The
combination of three slots is used as the intent of the utterance.
The dataset is split into train, valid and test set, the detailed
information is shown in Tabel I.

TABLE I: The detailed information about FSC.

Set Speakers Utterances Hours

Train 77 23132 14.7
Valid 10 3118 1.9
Test 10 3793 2.4

B. Implementation Details

We adopt 108-dimensional filterbank features (36 filter-
bank features, delta coefficients, and delta-delta coefficients)
without mean and variance normalization as the input of
the system. The system configurations are as follows. As
for the baseline system in Fig. 2, the encoder uses a stack
of 2 conformer blocks. All Conformer blocks used in the
encoder have identical configuration. The multi-head self-
attention module of each Conformer block has 8 attention
heads and sets the attention dim to 552. The convolution
module of each conformer block sets the kernel size to 11
and the expansion factor to 2. We apply dropout with rate
of 0.1 in each residual unit of each Conformer block. The
Convolution module of the CNN blocks in the object decoder
contains two pointwise convolution layers and a depthwise
convolution layer [19] with kernel size of 31. The conformer
blocks of the action and location are same as those of the
encoder.
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C. Experimental Results

We use the error rate to evaluate the performance and the
results are listed in Table II. Compared with the contrastive
systems [11], our baseline can achieve a decent performance
with error rate of 0.82%. As shown in Table II, the PDSE A O
system with the proposed PDSE used on the object and action
decoders achieves the best performance with the error rate of
0.53%, which illustrates the effectiveness of the PDSE. We
also build a PDSE O system where the PDSE is only applied
on the object decoder. The result of the PDSE O is listed in
the last row of Table II. The PDSE A O system is only slightly
superior over the PDSE O.

TABLE II: Comparison of error rate between different
approaches on FSC.

Model Error Rate(%)

Radfar et al [8] 2.4
Lugosch et al [6] 1.2
Wang et al [11] 0.8

Baseline 0.82
PDSE A O 0.53

PDSE O 0.58

D. Ablation Study

As introduced in Section III, the losses involved in the
PDSE consist of LCE (in Eq1), Lsp (in Eq2), La

adv (in Eq4),
Le
adv (in Eq7). In the following experiments, we provide an

ablation study to evaluate the contribution of each loss. For
simplicity, we employ the PDSE O to conduct all ablation
experiments. We build three ablation systems trained with

TABLE III: the performances of different ablation systems.

Model Error Rate(%)

Baseline 0.82
Baseline+Lsp 0.74

Baseline+La
adv+Le

adv 0.87
Baseline+Lsp+Le

adv 0.81
PDSE O 0.58

different combinations of the above losses and the results are
listed in Table III. As shown in Table III, PDSE O outperforms
all ablation systems, which illustrates that the system can only
achieve the best performance when all the above losses are
used together.

TABLE IV: The performance of the PDSE O with different
dimension of eD.

Dimension of eD Error Rate(%)

552 0.84
276 0.92
138 0.58
69 0.69

In addition, the dimension of PDSE has a great impact on
the performance. For simplicity, we use different dimensions

of the eD in the PDSE O to explore how the dimension of
PDSE affect the performance. The results are listed in Table
IV. As shown in Table IV, the best performance is obtained
with eD = 138, that is the quarter of the whole object
embedding. As mentioned above, the information of action
in eD is eliminated, when the dimension of eD increases (as
listed in the first two lines in Table IV), the performance
drops obviously, the reason is that the whole object embedding
contains little information of action which helps to predict the
object value. Finally, we select a quarter of the whole object
embedding as eD in the object decoder.

V. CONCLUSION

In this paper, we propose partial disentangled slot embed-
ding (PDSE) and apply it on an end to end SLU system. We
selects a continuous portion of the original slot embedding
as PDSE which is trained to preserve the information of the
current slot from being covered by the information of other
slots through adversarial training. We evaluate the proposed
approach on the public FSC dataset and the PDSE shows
significant improvement on the performance of the baseline.
In additional, we conduct a number of ablation experiments to
explore the contribution of each loss involved and the influence
of the dimension of PDSE.
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