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Abstract—Studies examining Spoken Term Detection (STD) 

and Spoken Query STD (SQ-STD) or Query by Example (QbE) 

using a spoken query have been conducted actively in recent years. 

When a spoken query is transcribed into a text using an automatic 

speech recognizer in SQ-STD, some misrecognition leads to 

retrieval accuracy deterioration. Posteriorgrams obtained using 

Deep Neural Network (DNN) and so on can be regarded as 

speaker-independent features. Although posteriorgram matching 

between a posteriorgram of a spoken query and posteriorgram of 

speech data showed high retrieval accuracy, it requires a long 

retrieval time and a large memory space. In earlier papers, we 

proposed a maximum likelihood state sequence method (MLSS) 

for retrieval time reduction. As described herein, we propose a 

method for reducing both the retrieval time and the memory 

space using MLSS method and multiple machine learning models 

with different numbers of states. The models show heterogeneous 

retrieval results. Their integration is probably mutually 

complementary and engenders retrieval accuracy improvement. 

Evaluation results demonstrate that the proposed method 

improves the retrieval accuracy, thereby reducing the retrieval 

time and the memory space.  

Index Terms: Query by example, Spoken term detection, maximum 

likelihood state sequence 

I. INTRODUCTION 

Studies of spoken term detection (STD), the task of finding 

matched sections in speech data with a query consisting of one 

or more words [1,2,3], have been conducted increasingly along 

with the increased use of storage media such as hard disk drive 

(HDD). NIST STD evaluation [4], Spoken Web Search (SWS) 
[5], QUery by Example Search on Speech Task (QUESST) [6] 

and NTCIR Workshop held by the National Institute of 

Informatics [7,8] have been applied for the evaluation of STD 

and Spoken Query STD (SQ-STD) [9–13]. In many STD 

systems, speech data to be sought are transcribed into text data 

using an automatic speech recognizer (ASR). Then subword 

sequences of the text data are compared with a subword 

sequence of search words (queries) at a subword level using 

Continuous Dynamic Programming (DP), which performs DP 

or DTW continuously at a frame level. Studies of Spoken 

Query STD (SQ-STD) using a spoken query have also been a 

hot topic in recent years. A spoken query is transcribed into a 

text using an ASR. Some misrecognition leads to deterioration 

of the retrieval accuracy. The representative method for SQ-

STD uses posteriorgrams, sequences of posterior probability 

vectors for an utterance, which show speaker-independent 

features generated by Deep Neural Networks (DNNs) and other 

methods. After inputting a feature vector of a frame to DNN, 

posterior probabilities corresponding to the states of Hidden 

Markov Models (HMMs) are output for each frame. The output 

posterior probabilities are called posterior probability vectors. 

Matched sections of a spoken query among speech data are 

identified using continuous dynamic programming (CDP). To 

obtain a local distance in CDP, an inner product is computed 

between two posterior probability vectors of a spoken query 

and speech data. The inner product is transformed to a local 

distance by taking the negative logarithm. Posteriorgram 

matching generally shows high retrieval accuracy, but it 

requires long retrieval time and large memory space because 

the dimensions of a posterior probability vector amount to 

several thousand: about 3,000 in our experiments. For example, 

it took approximately 30 s and more than 100 GB to search a 

spoken query among approximately 30 hr of speech data. To 

reduce the necessary retrieval time and memory space, 

maximum likelihood state sequence (MLSS) for a spoken 

query or speech data has been proposed [14,15]. The method 

omits the inner product computation and enables the reduction 

of the retrieval time by compressing 3,000 dimensions in the 

posteriorgram to a single dimension. However, the retrieval 

accuracy of the maximum likelihood state sequence is much 

lower than that of posteriorgram matching because the amount 

of information disappears from 3,000 dimensions to a single 

dimension. This paper presents a balanced SQ-STD system that 

shows comparable performance to that of posteriorgram 

matching, but with greatly reduced retrieval time and memory 

space. The paper introduces multiple deep learning models 

with posterior probabilities corresponding to the states of 

Monophone HMMs, Triphone HMMs or Character HMMs. 

Each model has a different number of states or subwords 

(henceforth designated as the models). MLSS method is 

applied to these models for a spoken query and speech data. 

Distances obtained using the multiple models are integrated. 

Integration of multiple results is probably complemented 

mutually. It engenders the improvement of retrieval accuracy. 

We conduct evaluation experiments to confirm the 

effectiveness of the introduction of multiple models using open 

test collections. 
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II. RELATED WORK 

A. QbE using Posteriorgram 

In QbE, posteriorgram matching is a representative method 

that searches a posteriorgram of a spoken query for 

posteriorgrams of speech data using Dynamic Time Warping 

(DTW) or Continuous Dynamic Programming (CDP) that 

performs DTW continuously at a frame level [16]. A posterior 

probability vector is generated by Deep Neural Network 

(DNN) at each frame and each posterior probability 

corresponds to a likelihood of a state of triphone acoustic 

models. An inner product of the two posterior vectors is 

calculated to obtain a measure of similarity between two 

posterior vectors. Therefore, the negative logarithm of the inner 

product transforms the similarity to a local distance. A local 

distance is therefore calculated as shown below. 
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Therein, 𝑃𝑖
𝑑 , 𝑃𝑗

𝑞
,  N, and k respectively denote a posterior 

probability vector of the i-th frame in speech data, a posterior 

probability vector of the j-th frame in a speech query, the 

number of dimensions of the posterior probability vector, and 

the k-th dimension in a posterior probability vector. 

Subword matching method, another representative approach 

for QbE, converts speech data to subword sequences using 

ASR beforehand. A spoken query is also converted to a 

subword sequence. A subword sequence of the spoken query is 

sought among subword sequences of speech data. Comparison 

of posteriorgram matching with the subword matching method 

reveals that, although posteriorgram matching shows high 

search accuracy, it requires much more retrieval time to 

calculate the inner product of about 3,000 dimensions. It also 

requires huge memory size: number of frames of speech query 

× number of frames of speech data. 

B. Spoken query / Speech data maximum likelihood state 

sequence method  

A spoken query / speech data maximum likelihood state 

sequence (MLSS) [14,15] method was proposed to reduce the 

huge memory size and long retrieval time of posteriorgram 

matching. The MLSS method is explained briefly because the 

proposed method uses MLSS for a spoken query and speech 

data. An image of MLSS method for speech data is presented 

in Figure 1. At each frame in posteriorgrams of the speech data, 

the state number that shows the maximum probability in a 

posterior probability vector is extracted. A posterior probability 

vector with around 3,000 dimensions is compressed to a single 

dimension of which a sequence is a so-called a maximum 

likelihood state sequence (MLSS). The MLSS (Fig. 1 upper 

right) is held in advance. Actually, MLSS shows the sequence 

of the most probable state number for the speech data. Given a 

spoken query, it is converted to posteriorgram as speech data, 

as shown in the lower left panel in Figure 1. A posteriogram of 

a spoken query is located on the vertical axis. MLSS is placed 

at the horizontal axis in the lower right panel. At each frame of 

speech data, posterior probabilities corresponding to a 

maximum state number are referred to posterior probabilities 

of the same state number in the posteriorgram of the spoken 

query. For example, if the state number is 1 in the right orange 

rectangle in speech data, then the probabilities at state 1 in the 

posteriorgram of a spoken query are referred (left orange 

rectangle). Results indicate that when a sequence similar to the 

spoken query in speech data is found, high posterior 

probabilities are found diagonally between the corresponding 

frames, as shown in the lower right panel. Each posterior 

probability can be transformed into a distance beforehand 

according to equation (2). Therefore, calculation of the local 

distances is not required in the process of DTW or CDP. The 

posterior probability matrix is replaced by a local distance 

matrix. Letting the state of the frame i of the speech data be s(i), 

the local distance of the point (i, j) that denotes the frame j in 

spoken query is obtained by referring to (s(i),j) in the local 

distance matrix of the spoken query. 

 

 𝐷(𝑠(𝑖), j) = −𝑙𝑜𝑔10(𝑃(𝑖,𝑗)) 

 

 

 
Fig. 1. Speech data maximum likelihood sequence method flow 

 

The MLSS for a spoken query constructs a local distance 

matrix after a spoken query is given; computation of local 

distances by equation (2) is small. 

Because posteriorgrams of the speech data with about 3,000 

dimensions are converted to the maximum likelihood sequence 

of a single dimension, the memory size was reduced by about 

99%. The retrieval time was around 1/10 compared to that of 

posteriorgram matching, but the retrieval accuracy is lower 

because of the decreased amount of information. 

III. PROPOSED METHOD 

As described in this section, we apply maximum likelihood 

serialization method to multiple deep learning models and 

integrate the obtained retrieval results to achieve high accuracy, 

high speed, and low memory retrieval compared with 

posteriorgram matching. Each model and the reason for its use 

are explained below. 

 

(1) 

(2) 
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A. BLSTM 

A network of bi-directionally connected LSTMs, BLSTM, is 

an extension of the Recurrent Neural Network (RNN) structure. 

Compared to unidirectional learning models such as DNNs, 

BLSTM can learn bidirectional features. It is expected to 

improve the retrieval accuracy. BLSTM is used for this study, 

where the posterior probability output by BLSTM corresponds 

to each state of a triphone. 

B. ESPnet 

In recent years, end-to-end learning models have been used for  

ASRs. Reportedly, they provide higher recognition accuracy 

than DNN-HMM hybrids and other speech recognition systems 

[17]. The end-to-end ASR can map speech features to words 

and subwords directly through training. Moreover, it requires 

no correct label for each frame, which is necessary for 

conventional hybrid ASRs. Because ESPnet can construct 

models flexibly with different states corresponding to speech 

features such as words and subwords, ESPnet is used for the 

proposed method to construct models with heterogeneous state 

numbers. We apply maximum likelihood state sequence 

method (MLSS) to the models. ESPnet composed of Hybrid 

CTC/Attention [18] was used as an end-to-end speech 

recognizer. The same encoder is used for both CTC and 

Attention as a shared encoder. As described herein, we extract 

posteriorgrams, which comprise posterior probability vector 

output from CTC for input speech features. The heterogeneous 

models correspond to posterior probabilities that denote 

characters, syllables, and monophones. 

C. Proposed method using heterogeneous and multiple 

models 

When multiple deep learning models are used for QbE, each 

model generates a score for each utterance. The score denotes 

the distance described in Chapter 2 in this paper. A single 

model among the multiple models might give incorrect scores. 

For multiple models, one can assume that one model using 

heterogeneous models outputs the correct score, and that the 

score can be optimized using multiple scores [19]. 

Although, we concatenated posteriorgrams of each model 

such as BLSTM and CTC in our previous experiments, the 

retrieval accuracy was not improved. As described herein, we 

use heterogeneous models with posterior probabilities 

corresponding to characters, syllables, triphones, and 

monophones so that multiple scores are obtainable from the 

heterogeneous model for each utterance. The practical search 

time and memory size are investigated during QbE. The 

proposed system is aimed at a balanced system among retrieval 

accuracy, search time, and memory size for QbE.  

D. Score integration 

Scores obtained from the retrieval of heterogeneous and 

multiple models were integrated linearly. Given a speech query, 

two scores denoted as 𝐷1 and 𝐷2 were obtained from the two 

models for an utterance. The new score Dnew was obtained 

using Equation (3). Weighting factor α was set to 0 ≤ α ≤1 and 

was determined using a cross-validation method with two test 

sets. 

 

𝐷𝑛𝑒𝑤  =  α𝐷1  +  (1 −  𝛼)𝐷2 
 

IV. EVALUATION EXPERIMENTS 

A. SQ-STD using Posteriorgram 

BLSTM and Hybrid CTC/Attention were trained using the 

Corpus of Spontaneous Japanese (CSJ), which contains 2,702 

lectures: about 600 hr speech. Features for BLSTM are 120 

dimensions composed of 40 dimensional filter bank (FBANK) 

and its Δ, and ΔΔ. The dimension of the input feature amounts 

to 1,320 of 11 frames, adding 5 frames before and after the 

current frame. BLSTM output layers correspond to each state 

of triphone. Triphones share the state and the number of states 

amounts to 3,009. Features for Hybrid CTC/Attention 

architecture are 83 dimensions, which are 80 dimensions of 

filter bank (FBANK) adding three dimensions of pitch. For 

Hybrid CTC/Attention, we prepare three models with output 

layers corresponding to characters, syllables, and monophones. 

The numbers of output nodes for the three models were, 

respectively, 3,245, 264, and 43 (3,242 words, 261 syllables, 

40 phonemes adding three types of labels: blank label, <unk> 

label for unknown state, and <eos> label for terminal state 

appearing in the training data). The processing time was 

measured using a personal computer: CPU, Core i7-6700K, 

Intel Corp.; GPU, GeForce GTX 1080, NVIDIA; memory, 16 

GB. The retrieval using multiple models are conducted in 

parallel on multiple CPUs. 

TABLE I  

Conditions for Feature Extraction 

 

TABLE II  

Two Open Test Collections 

 

B. Test Collections 

The NTCIR-10 Formal run and NTCIR-12 Formal run shown 

in Table II were used as test sets for experimental evaluation. 

NTCIR-10 includes 104 lectures (about 29 hr, 40,746 

utterances) of the Spoken Document Processing Workshop 

(SDPWS). NTCIR-12 includes 98 lectures (about 29 hr, 37,782 

utterances) of SDPWS. NTCIR-10 and NTCIR-12 respectively 

include 100 and 113 queries and the correct labels of the 

queries. Because NTCIR-10 includes no spoken query, we 

 DNN, BLSTM, CTC 
Hybrid 

CTC / Attention 

Feature parameter 

120 dimensions 

FBANK (40 dims) 
+ ΔFBANK (40 dims) + 
ΔΔFBANK (40 dims) 

83 dimensions 

(FBANK (80 dims)) 

+ Pitch (3 dims) 

Window length 25 ms 25 ms 

Frame shift 10 ms 10 ms 

 NTCIR-10 NTCIR-12 

Spoken documents 

104 presentations, 

29 hr,  

40,746 utterances 

98 presentations, 

27.5 hr, 

37,782 utterances 

Query sets 
Formal run: 100 

(10 people) 

Formal run: 113 

(10 people) 

(3) 
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recorded 100 queries uttered by 10 people (5 men and 5 

women); all 1000 utterances are used for spoken queries. 

Spoken queries provided by the organizer were used for 

NTCIR-12. Mean average precision (MAP) was used to 

evaluate the retrieval accuracy. 

C. Retrieval Accuracy of Each Single Model 

Table III presents the retrieval performance (retrieval accuracy, 

retrieval time, and memory size) of each trained single model 

using posteriorgram matching and MLSS methods. The 

retrieval accuracy of posteriorgram matching of BLSTM was 

79.78% for NTCIR-10 and 74.83% for NTCIR-12, which is 

used as the baseline in this paper. Because the Hybrid 

CTC/Attention using monophone has small dimensionality (43 

dimensions) and because it requires no large amount of 

memory size, MLSS for a spoken query was used. For BLSTM, 

half of the frames are used to reduce the retrieval time by 

averaging the posterior probability values of two neighboring 

frames. Although the retrieval accuracy was reduced by an 

average of 3 pts, the retrieval time and the required amount of 

memory were reduced by half. 

The highest retrieval accuracy obtained using MLSS method 

was for NTCIR-10 with Hybrid CTC/Attention of syllable, 

using MLSS for speech data, and for NTCIR-12 with Hybrid 

CTC/Attention of monophone using MLSS for a spoken query. 

 

TABLE III  

Retrieval Accuracies for the Respective Models and 

Architectures 

 

 

Table IV presents comparisons of the retrieval accuracy of 

the proposed method using four models (all) and posteriorgram 

matching. These four models are shown on the right side of 

Table III (BLSTM–character–syllable–monophone). The 

integration ratio was changed by 0.1. The best retrieval 

accuracies were obtained with (0.2–0.1–0.2–0.5) and (0.1–0.4–

0.3–0.2), respectively, for NTCIR-10 and NTCIR-12. The 

other best integration ratio was used in a cross-validation case. 

For example, the best integration ratio of NTCIR-12 was used 

for the experiment of NTCIR-10 in a cross-validation case. The 

retrieval accuracy of the proposed method using four models 

was 85.17% with +5.39 pt in NTCIR-10 compared with 

79.78% in BLSTM posteriorgram matching, and 84.94% with 

+5.16 pt in cross-validation in a cross validation case, which 

exceeded the accuracy of posteriorgram matching. The 

retrieval accuracy of the proposed method using four models 

was 85.25% with +10.42 pt in NTCIR-12, compared to 74.83% 

in BLSTM posteriorgram matching and 85.19% with +10.36 pt 

in cross-validation in a cross validation case, which is much 

better than the accuracy achieved with posteriorgram matching.  

Cross-validation led to no decrease in the retrieval accuracy for 

either dataset. The integration ratio therefore, didn’t affect the 

retrieval accuracy seriously. 

The search time was calculated by actually running all 

models in parallel on one PC and by adding the integration time 

(0.08 s for NTCIR-10 and 0.07 s for NTCIR-12). Compared 

with the retrieval time of posteriorgram matching of BLSTM, 

29.08 s was reduced to 2.11 s for NTCIR-10. The same 

tendency was observed for NTCIR-12. The required memory 

size during the retrieval was reduced greatly to about 0.4 GB 

for both NTCIR-10 and NTCIR-12. 

 

TABLE IV  

Comparison of integrated results  

with those obtained by posteriorgram matching 

V. CONCLUSIONS 

As described in this paper, we integrate the scores obtained 

from four deep learning models linearly with different 

corresponding states in the SQ-STD task to improve the 

retrieval accuracy while considering the practical retrieval time 

and the memory size. Results of integration demonstrated the 

retrieval time as about 2 s, even with the four models integrated. 

The necessary memory size for retrieval was about 0.4GB for 

both datasets. The retrieval accuracy was 84.94% in the cross-

validation case (the best percentage was 85.17%) for NTCIR-

10, and 85.19% in the cross-validation case (the best 

percentage was 85.25%) for NTCIR-12. In both datasets, the 

retrieval accuracy was more than 5 percentage points higher 

than that of posteriorgram matching of BLSTM. Cross-

validation led to no decrease in the retrieval accuracy for either 

dataset. 
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NTCIR-10 

Retrieval 

method 
Posteriorgram 

Maximum likelihood 

MLSS for Speech data 
MLSS for 

Spoken query 

Model BLSTM BLSTM 
Hybrid CTC/Attention 

Character Syllable Monophone 

Retrieval 

accuracy (%) 
79.78 69.92 71.86 78.00 77.96 

Retrieval  

time (s) 
29.08 1.84 0.23 0.20 0.37 

Memory 

capacity (GB) 
114 0.01 0.006 0.006 0.41 

NTCIR-12 

Retrieval 

method 
Posteriorgram 

Maximum likelihood 

MLSS for Speech data 
MLSS for 

Spoken query 

Model BLSTM BLSTM 
Hybrid CTC/Attention 

Character Syllable Monophone 

Retrieval 

accuracy (%) 
74.83 66.48 72.37 75.74 79.51 

Retrieval  

time (s) 
27.35 1.69 0.20 0.20 0.31 

Memory 

capacity (GB) 
107 0.01 0.005 0.005 0.38 

 NTCIR-10 NTCIR-12 

Retrieval method Posteriorgram Integration Posteriorgram Integration 

Model BLSTM ALL BLSTM ALL 

Retrieval 

accuracy (%) 
79.78 85.17 74.83 85.25 

Retrieval time (s) 29.08 2.11 27.35 1.91 

Memory 

capacity (GB) 
114 0.43 107 0.40 
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