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Abstract—Unsupervised spoken term discovery is the task of
finding recurring word-like patterns from raw audio without any
manual transcription. Several approaches have been investigated,
but the matching between automatically found fragments and
actual words is still shallow. Recently, a self-supervised learning
method wav2vec 2.0 has been proposed, and it is demonstrating
outstanding performance in pre-training acoustic models for
speech recognition. During the training, wav2vec 2.0 applies
quantization to a latent representation of the input acoustic
features. As a by-product, a discrete code sequence is obtained. In
this work, we propose to use the code sequence for unsupervised
term discovery. The temporal resolution of the code sequence is
fine-grained, and it is closer to a phone sequence rather than
a word sequence. To obtain larger units, we apply the ES-
KMeans method to the code and feature sequences obtained by
wav2vec 2.0. In addition, we iteratively optimize wav2vec 2.0
and ES-KMeans for further improvement. Experimental results
using the Zero Resource Speech Challenge 2020’s data show the
proposed method outperforms existing methods on average while
the results vary on languages.

I. INTRODUCTION

Recent speech recognition systems have made remarkable
progress [1], but these powerful systems require huge amounts
of speech data and transcribed text labels for training. How-
ever, most languages other than the world’s major languages
have few transcribed data. Moreover, some languages do not
have a writing system. Therefore, these speakers can not
use speech recognition systems. Approaches to solving this
problem are implementing a speech recognition system using
a limited amount of text labels if the text is available and from
a longer-term perspective to realize a spoken language acqui-
sition system that automatically leans and understands spoken
languages [2], [3]. The Zero Resource Speech Challenge [4]
facilitates fundamental researches that contributes to develop
the foundation for the goal.

The Zero Resource Speech Challenge has set up several
tasks. One of the essential tasks is unsupervised spoken term
discovery. The purpose of the task is to discover repeated
word-like patterns without using any text labels. The systems
should take raw speech as input and output boundary and class
labels of speech fragments.

One of the powerful existing methods is Embedded Segmen-
tal K-Means (ES-KMeans) [5]. ES-KMeans optimizes word
segmentation and clusters jointly. As the initialization, the
algorithm takes a set of candidate word boundaries. It maps the
candidate word fragments to small fixed dimensional vectors
by using a word embedding method. Then it alternatively

repeats clustering the embedding vectors as word clusters
and re-selecting the word boundaries. It efficiently performs
the re-selection of the word boundaries by using Dynamic
Programming with an objective function defined by the word
clusters.

There are several existing segmentation methods that pro-
vide the initial word boundaries. Among them, syllable seg-
mentation [6] was the first method that was used in the original
ES-KMeans research. It segments sound waveform based on
amplitude envelope. However, depending on language, word
boundaries are not clear in the envelope and it overlooks
many of them. Since ES-KMeans only considers candidate
word boundaries given at the beginning, it does not work well
for such languages. Other options for the initial segmentation
includes phonetic segmentation [7] and self-expressing autoen-
coders [8]. However, their performance varies on languages
and there is no single best method.

In this paper, we propose to apply wav2vec 2.0 [9] to
provide the initial segmentation. The wav2vec 2.0 method
has been proposed as a self-supervised learning framework to
learn acoustic representations from raw audio data. It has been
very powerful to develop speech recognition systems using a
small amount of labeled data by using a large amount of raw
speech data set or from the large amount of unpaired speech
and text data [10]. The wav2vec 2.0 model is composed of
a multi-layer convolutional feature encoder that takes a raw
audio input and outputs its latent representations, a quantizer
for the latent representation, and a Transformer [11]. For
the self-supervised representation learning, it is trained with
a contrastive task, where it is required to identify the true
quantized latent speech representation for a masked time step
among a set of distractors. As the by-product to perform the
contrastive task, it generates a discrete code sequence using
the quantizer. The quantizer works as a rich unsupervised
segmentation method and produces a pseudo phone sequence.

We investigate two ways of the combination of wave2vec
2.0 and ES-KMeans. The first one is to simply connect the
initial pseudo phone segmentation produced by wave2vec 2.0
as the input to the ES-KMeans method. The second one is
to alternatively perform wave2vec 2.0 and ES-KMeans. We
feedback the pseudo word segmentation result obtained by ES-
KMeans to wave2vec 2.0 as an auxiliary input, and iteratively
refine the segmentations.
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Fig. 1: Model structure of wav2vec 2.0.

II. MODEL STRUCTURE OF WAV2VEC 2.0

Fig. 1 shows the model Structure of wav2vec 2.0. The
feature encoder of wav2vec 2.0 is a multi-layer CNN that
takes raw audio signal X as its input and outputs a sequence
of latent speech representation vectors z1, ..., zT , where T is
the frame length of the output. For the quantization, it uses
product quantization with G codebooks. The output of feature
encoder z is converted to logits l ∈ RG × V , where V is the
number of quantization classes. To choose discrete codes in a
differentiable manner, Gumbel softmax [12] is used as shown
in Equation (1).

pg,v =
exp(lg,v + nv)/τ∑V

k=1 exp(lg,k + nk)/τ)
, (1)

where τ is a non-negative temperature, n = −log(−log(u)),
u is a random sample uniformly drawn from (0, 1), and pg,v
is the probability that lg,v belong to v-th class. The quantized
class i is found by i = arg max

j
pg,j . Let I = i1, ..., iT be

the code sequence and Q = q1, ..., qT be the code vector
sequence corresponding to z1, ..., zT .

The code sequence I may be directly regarded as a sequence
of pseudo words by marking the consecutive frames having the
same code as a word. However, the time resolution of I is too
fine-grained for it.

III. EMBEDDED SEGMENTAL K-MEANS

ES-KMenas divides the sequences into word like segments
and clusters these segments. Let Y = y1, ...,yT is the
feature vector sequences. An acoustic word embedding method
fe maps variable length segments yt1:t2 that segmented by
initial segmentation method to fixed dimensional vector wi =
fe(yt1:t2) . Let B = {bi}Mi=1 is the boundaries, where M
is the number of segments and bi indicates the boundary for
segment i. These boundaries are selected from word bound-
ary candidates generated by the initial segmentation method.
The embedded segments under the current segmentation are
represented by W (B).
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Fig. 2: Structure of the proposed sequential combination of
wav2vec 2.0 and ES-KMeans.

ES-KMeans objective is an extension of standard K-Means
objective, and it is defined as follows

min
B,a

K∑
c=1

∑
w∈Wc∩W (B)

len(w)||w − µc||2 (2)

where a indicates which cluster w is assigned to, K is the
number of clusters, Wc ∩ W (B) are segments assigned to
cluster c under segmentation B, len(w) is the number of
frames of segment w and µc is cluster mean.

ES-KMeans algorithm is a 2-step iteration. The algorithm
classifies like Standard K-Means with fixed boundaries and
determines the assignments a. Then dynamic programming
algorithm updates boundaries B based on the assignments a
and cluster centers µc.

IV. PROPOSED METHOD

A. Sequential Combination

Fig. 2 shows our strategy of combining wav2vec 2.0 and
ES-KMeans sequentially. We use the code sequence generated
by the quantization module of wav2vec 2.0 as the initial
word boundary candidates for ES-KMeans. We use the code
vector sequence Q as the feature vector sequence Y . We
regard the changes of the codes in the code sequence I as
indicators of the possible word boundaries. ES-KMeans selects
the boundaries B from them.

Compared to directly use wav2vec 2.0 as the word segmen-
tation method, we can expect longer and better word segmen-
tation. For simplicity, we set the number of the quantization
Groups G to 1, where the product quantization reduces to
vector quantization.
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Fig. 3: Structure of the proposed iterative combination of
wav2vec 2.0 and ES-KMeans.

B. Iterative Combination

There is no explicit constraint for wav2vec 2.0 that it gener-
ates the same pseudo phone sequence for multiple instances of
the same word in the waveform input. In fact, it often produces
different pseudo phone sequences for different appearances
of the same word. We expect that wave2vec2.0’s phone
segmentation performance is improved by using the pseudo
word segmentation information obtained by ES-Kmeans as an
additional input.

Fig. 3 shows how to iteratively refining the ES-KMeans
word segmentation and wav2vec 2.0 phone segmentation.
In the first iteration, we sequentially run wav2vec 2.0 and
ES-KMeans in order as in the sequential method without
modifying the input to wav2vec 2.0. In the following iterations,
we extend the input of wav2vec 2.0 by using the pseudo
word segmentation information produced by ES-KMeans in
the previous iteration.

As the word segment information, we use a sequence of
centroid vectors of pseudo word clusters made by ES-KMeans
regarding the centroid vectors as an embedding expression
of the pseudo word segments. We up-sample the embedding
vector sequence to the frequency of the latent speech repre-
sentation vectors zt by repeating the same vector in a pseudo
word segment. After applying a Bi-LSTM network, we input
it to the transformer module together with the latent speech
representation vectors.

V. EXPERIMENTAL SETUP

We used the data set provided by the Zero Resource Speech
Challenge 2020. The data set contains five languages, but an
evaluation script is only publicly available for three languages
among them. We used the three languages, which are English,
French, and Mandarin. They have 45, 24 and 2.5 hours of
data, respectively. The evaluation script by the Zero Resource
Speech Challenge 2020 provides multiple performance mea-
sures. Boundary is a measure that evaluates word boundaries
at acoustic frame level aligned to nearest reference phone
boundaries. It is explained in the Zero Resource Speech

Challenge 2020’s web page that the Boundary measure is
provided for completeness and for system diagnostic1. The
primary measures are Token and Type. Token evaluates the
quality of the found word segments in frame level, and Type
evaluates the quality of the discovered vocabulary.

We trained wav2vec 2.0 using the fairseq toolkit [15].
Fairseq provides two configurations of models having different
number of parameters, and we used the BASE model. The
CNN output size is 768, and we set the quantization number
V to 128. In the proposed method, the Bi-LSTM module to
use the pseudo word information from ES-Kmeans is a one-
layer network whose hidden size is 256. When combined with
the CNN output, the input size of the transformer module is
768 + 256 = 1024. We separately trained a model for each
language.

VI. RESULTS

Table I shows summary results by averaging the results
over the three languages. We denote the sequential wav2vec
2.0 and ES-KMeans combination as ”wav2vec 2.0+ES-
KMeans” and the iterative combination as ”wav2vec 2.0+ES-
KMeans(iterative)”, where the number of the iterations was
3.

For comparison, we include scores of existing methods
reported at the Zero Resource Speech Challenge in the table.
These include; ”Self clustering Autoencoder for unsupervised
features learning” (self clustering autoencoder) [8], ”seq2seq
RNN for features learning with UAD pairs” (seq2seq RNN),
and ”Probabilistic DTW” (PDTW) [14]. PDTW has two vari-
ations registered with the same name, and we describe them
as PDTW(1) and PDTW(2). Further, SylSeg+ES-KMeans and
phnSeg+ES-KMeans indicate the results of ES-KMeans using
syllable segmentation and phonetic segmentation, respectively.

While wav2vec 2.0+ES-KMeans and wav2vec 2.0+ES-
KMeans(iterative) are inferior to several conventional meth-
ods (i.e., self clustering autoencoder, seq2seq RNN, and
PDTW(1)) in terms of the Boundary F-score, they outperform
conventional methods in Token and Type F-measures. We con-
jecture that the reason is that wav2vec 2.0 has high sensitivity
in finding phonetic changes in sound signals. It finds more
possible boundaries than existing methods, resulting in higher
recall and lower F-score in the Boundary measure. However,
it is actually advantageous to achieve higher F-scores in more
important Token and Type measures.

Compared to the conventional ES-KMeans based methods
(i.e. SylSeg+ES-KMeans and PhnSeg+ES-KMeans), wav2vec
2.0+ES-KMeans is superior to these methods for all three
evaluation measures. Comparing the results before and after
applying ES-KMeans to wav2vec 2.0, Boundary was slightly
reduced but Token and Type were improved. Especially, the
improvement of Token was large. This comparison shows the
usefulness of applying ES-KMeans and of using wav2vec 2.0
as an initial segmentation for running ES-KMeans.

1https://zerospeech.com/2020/index.html
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TABLE I: Summary scores averaged over the three languages.

mean of
Boundary-F

mean of
Token-F

mean of
Type-F

baseline [13] 3.2 0.2 0.9
self clustering autoencoder [8] 48.9 9.7 6.5

seq2seq RNN 51.3 9.5 7.7
PDTW(1) [14] 46.4 4.5 7.5

PDTW(2) 25.3 2.6 2.1
SylSeg+ES-KMeans [5] 44.5 6.7 6.1
PhnSeg+ES-KMeans [7] 38.6 6.9 6.8

wav2vec 2.0 45.5 6.1 8.5
wav2vec 2.0+ES-KMeans 45.3 10.0 8.8

wav2vec 2.0+ES-KMeans(iterative) 45.2 11.2 10.0

TABLE II: Detailed results for the three languages. P = Precision, R = recall, F = fscore.

Boundary Token Type
English P R F P R F P R F NED Cov
baseline 32.1 3.2 5.9 1.9 0.1 0.3 1.9 1.7 1.8 32.4 7.9

self clustering autoencoder 32.5 78.9 46.1 5.8 16.8 8.6 2.1 24.1 3.9 89.5 99.5
seq2seq RNN 37.7 63.9 47.4 6.1 11.1 7.9 2.5 27.1 4.5 94.0 99.2

PDTW(1) 29.4 85.2 43.7 2.2 27.8 4.1 3.5 14.2 5.6 48.2 85.4
PDTW(2) 27.4 28.5 28.0 2.2 3.1 2.6 5.6 1.7 2.6 30.4 23.1

SylSeg+ES-KMeans 51.0 55.4 52.7 13.0 14.1 13.5 8.3 16.7 11.1 72.6 100.0
PhnSeg+ES-KMeans 26.4 41.0 32.2 5.0 8.0 6.2 4.5 9.4 6.1 72.2 100.9

wav2vec 2.0 26.7 86.7 40.8 1.7 6.2 2.7 6.0 2.0 3.0 - -
wav2vec 2.0+ES-KMeans 27.5 77.0 40.6 4.4 13.1 6.6 4.1 5.9 4.8 86.7 100.0

wav2vec 2.0+ES-KMeans(iterative) 29.4 67.6 41 6.4 13.3 8.6 4.2 11.7 6.1
French Boundary Token Type NED Cov

baseline 32.5 0.6 1.2 1.3 0.0 0.1 3.0 0.3 0.5 69.5 1.6
self clustering autoencoder 34.0 83.9 48.4 5.5 17.2 8.3 2.6 16.2 4.5 89.0 99.8

seq2seq RNN 39.2 72.4 50.9 6.3 12.6 8.4 3.1 22.5 5.5 93.1 99.7
PDTW(1) 31.6 86.4 46.3 2.8 30.1 5.1 4.6 9.1 6.1 36.7 83.5
PDTW(2) 30.3 23.4 26.4 3.9 3.6 3.8 7.4 0.9 1.6 20.3 17.5

SylSeg+ES-KMeans 37.8 41.6 39.6 3.5 3.9 3.7 3.1 6.3 4.2 72.6 100.0
PhnSeg+ES-KMeans 25.4 38.4 30.6 4.8 7.6 5.9 4.2 7.9 5.5 72.2 100.0

wav2vec 2.0 28.8 77.6 42.0 3.3 11.0 5.1 4.5 4.8 4.7 - -
wav2vec 2.0+ES-KMeans 29.5 69.2 41.4 5.3 13.4 7.6 4.1 8.4 5.5 86.4 100.0

wav2vec 2.0+ES-KMeans(iterative) 30.1 61.2 40.4 6.1 11 7.8 3.7 9.6 5.3
Mandarin Boundary Token Type NED Cov
baseline 54.3 1.3 2.5 6.4 0.1 0.2 4.9 0.2 0.3 28.6 2.7

self clustering autoencoder 36.5 91.9 52.2 7.9 25.4 12.1 6.9 29.1 11.1 94.7 99.9
seq2seq RNN 42.5 80.7 55.7 9.3 18.1 12.3 8.4 28.9 13.0 97.3 99.8

PDTW(1) 34.2 87.4 49.2 2.4 23.9 4.4 10.3 11.2 10.7 57.6 79.7
PDTW(2) 34.7 15.5 21.4 2.5 1.1 1.5 14.5 1.2 2.2 34.9 10.4

SylSeg+ES-KMeans 36.5 47.1 41.1 2.5 3.4 2.9 2.5 4.1 3.1 88.1 100.0
PhnSeg+ES-KMeans 43.8 66.8 52.9 6.9 11.5 8.7 7.7 10.4 8.8 80.0 117.0

wav2vec 2.0 38.5 89.4 53.8 6.7 22.9 10.4 22.2 14.9 17.8 - -
wav2vec 2.0+ES-KMeans 41.1 77.9 53.8 11.8 24.3 15.9 13.7 19.1 16.0 94.9 100.0

wav2vec 2.0+ES-KMeans(iterative) 43.8 71.4 54.3 13.7 22.7 17.1 15.3 23.3 18.5

Looking at the effect of the iteration with the proposed
method, the Token-F increased by 1.1 and the Type-F in-
creased by 0.8. Fig. 4 shows the relationship between the
number of iterations and the performance. The score of the first
iteration is equivalent to the simple combination of wav2vec
2.0 and ES-KMeans (wav2vec 2.0+ES-KMeans in Table I).
The first three iterations were the most effective.

Table II shows the detailed results for each language. In
the table, P, R, and F stand for precision, recall, and F-score,

respectively. We could not obtain NED and Cov for wav2vec
2.0 using the toolkit, and they are not shown in the table.
The evaluation script did not terminate. As can be seen, the
performance of every method broadly varies on language.

We see that wav2vec 2.0 achieves high Boundary recall for
all the languages though not always the best. This confirms
our assumption that wav2vec 2.0 learns fine changes in speech
and can find more correct boundaries. While the F-scores
by our proposed methods are inferior to that of SylSeg+ES-
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Fig. 4: Relationship between the number of iterations and the
performance with wav2vec 2.0+ES-KMeans(iterative).

TABLE III: Comparison of summary scores of wav2vec
2.0+ES-KMeans(iterative) in Bi-LSTM hidden size.

hidden size mean of
Boundary-F

mean of
Token-F

mean of
Type-F

256 45.2 11.2 10.0
32 45.3 11.1 9.6

KMeans for English, they are working well for French and
Mandarin. Comparing the two proposed methods, wav2vec
2.0+ES-KMeans(iterative) most always outperformed wav2vec
2.0+ES-KMeans.

Table III shows comparison of summary scores of wav2vec
2.0+ES-KMeans(iterative) in Bi-LSTM hidden size. We see
that the hidden size 256 is comprehensively more effective
than the hidden size 32.

VII. CONCLUSIONS

In this paper, we propose to use wav2vec 2.0 for unsu-
pervised spoken term discovery. While the evaluation results
largely vary on the languages including the existing methods,
our proposed methods provided better Token and Type F-
scores than other methods on average. Comparing the two
proposed methods, iteratively refining the pseudo phone and
word segmentation was useful to improve the performance.
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