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Abstract—How to effectively incorporate cross-utterance 
information cues into a neural language model (LM) has emerged 
as one of the intriguing issues for automatic speech recognition 
(ASR). Existing research efforts on improving contextualization of 
an LM typically regard previous utterances as a sequence of 
additional input and may fail to capture complex global structural 
dependencies among these utterances. In view of this, we in this 
paper seek to represent the historical context information of an 
utterance as graph-structured data so as to distill cross-utterances, 
global word interaction relationships. To this end, we apply a 
graph convolutional network (GCN) on the resulting graph to 
obtain the corresponding GCN embeddings of historical words. 
GCN has recently found its versatile applications in social-
network analysis, text summarization, and among others due 
mainly to its ability of effectively capturing rich relational 
information among elements. However, GCN remains largely 
underexplored in the context of ASR, especially for dealing with 
conversational speech. In addition, we frame ASR N-best 
reranking as a prediction problem, leveraging bidirectional 
encoder representations from transformers (BERT) as the vehicle 
to not only seize the local intrinsic word regularity patterns 
inherent in a candidate hypothesis but also incorporate the cross-
utterance, historical word interaction cues distilled by GCN for 
promoting performance. Extensive experiments conducted on the 
AMI benchmark dataset seem to confirm the pragmatic utility of 
our methods, in relation to some current top-of-the-line methods. 

Keywords—automatic speech recognition, language modeling, 
N-best hypothesis reranking, cross-utterance, BERT, GCN 

I. INTRODUCTION 

Dictation of conversational speech with automatic speech 
recognition (ASR) has many use cases in our daily lives. 
Possible applications range from meeting and dialogue 
transcriptions, interactive voice responses to smart speakers, 
just to name a few [1][2]. Successful deployment of these 
applications also predominantly hinges on the performance of 
ASR [3]. Meanwhile, a language model (LM) is an integral 
component of any ASR system since it can be employed to 
constrain the acoustic analysis, guide the search through 
multiple candidate word (or subword) strings, and quantify the 
acceptability of the final output from an ASR system [4]. The 

traditional n-gram LMs [5][6][7] are inadequate in modeling 
within-sentence (local) regularity patterns of language usage, 
since they determines the probability of a current word given 
its n-1 immediate predecessors. In this review, neural LMs 
instantiated with recurrent neural network (RNN) [8][9], long 
short-term memory (LSTM) [10][11][12], Transformer LM 
(TLM) [13][14], and others have aroused great attention 
recently to tackle this issue. These neural LMs, however, are 
hardly be used at the first-pass decoding stage of ASR due to 
the exponential growth of hypothesis search space with the 
increase in the modeling context of an LM. An alternative and 
lightweight therapy is to employ them to give LM scores to the 
hypotheses at the second-pass N-best hypothesis reranking 
stage [15][16][17], making most ASR modules remain 
unchanged while having a fast experiment turnover. 

On a separate front, a more recent trend in dealing with 
conversational ASR problems is to infuse cross-utterance 
information cues into a neural language model when perform 
ASR on an utterance [18][19][20][21]. However, when with an 
RNN- or LSTM-based LM, context carryover of historical 
utterances by concatenating their LM hidden state 
representations or ASR transcripts for use in N-best hypothesis 
reranking often only leads to moderate improvements. This 
may because that RNN and LSTM inherently suffer from the 
sharp nearby, fuzzy far away issues [22] and may fail to capture 
complex global structural dependencies among these utterances. 
Building on these observations, we in this paper manage to 
render the historical context information of an utterance as 
graph-structured data so as to distill cross-utterances, global 
word interaction relationships. For the idea to work, a graph 
convolutional network (GCN) [23] is operated on the resulting 
graph to obtain the corresponding GCN embeddings of 
historical words. GCN has recently found its versatile 
applications on social-network analysis, text summarization, 
and many others due mainly to its ability of effectively 
extracting rich relational information among elements. To our 
knowledge, there is a dearth of work on tapping into GCN for 
language modeling of ASR, especially for handling 
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conversational speech. Furthermore, ASR N-best reranking will 
boil down to a prediction problem in this study. To this end, we 
employ bidirectional encoder representations from 
transformers (BERT) [24][25][26] as the vehicle to not only 
seize the local intrinsic word regularity patterns inherent in a 
candidate hypothesis but also incorporate the cross-utterance, 
historical word interaction cues uncovered by GCN for better 
ASR performance. The rest of this paper is organized as follows. 
Section II introduces the BERT-based reranking framework, 
while Section III elucidates our proposed approach to 
capitalizing on GCN to model historical utterances for ASR N-
best reranking. After that, the experimental setup and results are 
presented in Section IV. Finally, we summarize this paper and 
envisage future research directions in Section V. 

II. BERT-BASED RERANKING FRAMEWORK 

In this section, we review the fundamentals and instantiations 
of previously proposed BERT-based modeling framework for 
ASR N-best hypothesis reranking [24][25]. As we will see in 
Section III, we extend this framework by additionally 
incorporating the global information about the vocabulary and 
language structure inherent in the preceding utterances of an 
utterance of interest. Such global information is captured by 
GCN for better reranking. 

A. Fundamentals of BERT 

BERT [26] is a neural contextualized language model, which 
leverages multi-layer Transformer encoder [27] based on the 
so-called multi-head self-attention mechanism. Such a 
mechanism is anticipated to simultaneously capture different 
aspects of local contextual interactions between lexical units 
(which are usually in the form of words or word pieces) 
involved in its input token sequence(s). In contrast to the 
traditional word embedding methods, the main advantage of 
BERT is that it can produce different contextualized 
representations of individual words at different locations by 

considering bidirectional dependencies of words within a 
sentence or across consecutive sentences. The training of BERT 
in general consists of two stages: pre-training and fine-tuning. 
At the pre-training stage, BERT is essentially trained to 
optimize the two tasks, namely the masked language modeling 
(MLM) and the next sentence prediction (NSP), on large-scale 
unlabeled text corpora (e.g., Wikipedia). At the fine-tuning 
stage, the pre-trained BERT model, stacked with an additional 
single- or multi-layer feedforward neural network (FFN), can 
be fine-tuned to work well on many text learning tasks when 
only a very limited amount of supervised task-specific training 
data is made available. 

B. BERT for ASR N-best Hypothesis Reranking 

In recent work [24], an effective BERT-based modeling 
framework for ASR N-best hypothesis reranking had been put 
forward. This framework aims to predict a hypothesis that 
would have the lowest WER (i.e., the oracle hypothesis) from 
an N-best list (denoted by PBERT). In realization, PBERT 
consists of two model components, namely BERT stacked with 
an additional prediction layer which usually a simple fully-
connected FFN, as depicted in Figure 1. For a given ASR N-
best list, each hypothesis is respectively taken as an input to the 
BERT component, and meanwhile [CLS] and [SEP] tokens are 
inserted at the beginning and end of each hypothesis, 
respectively. In turn, the resulting embedding vector of [CLS] 
is used as a semantic-aggregated representation of the input 
hypothesis. After that, the [CLS] embedding vectors of all the 
N-best hypotheses are spliced together to be fed into the FFN 
component to output a prediction score (with the softmax 
normalization) for each hypothesis. Given a set of training 
utterances, each of which is equipped with an N-best hypothesis 
list generated by ASR and the indication of the oracle 
hypothesis that has the lowest WER, we can train the FFN 
component and fine-tune the BERT component accordingly. 

 
 
 

Figure 1: A schematic depiction of PBERT for ASR N-
best hypothesis reranking [24]. 
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Figure 2: A schematic depiction of HPBERT for ASR N-
best hypothesis reranking [25]. 
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Not content to merely conducting ASR N-best hypothesis 
reranking for an utterance in isolation, the authors of [25] had 
taken a step further to incorporate historical, cross-utterance 
context information into PBERT (denoted by HPBERT), as 
schematically depicted in Figure 2. This is because that in real 
use cases of ASR, a sequence of consecutive utterances may 
jointly contain many important conversation-level phenomena 
across utterances. More specifically, each hypothesis of the 
current utterance of interest is first concatenated with the 
topmost ASR hypotheses (sequentially generated by N-best 
hypothesis reranking) of its preceding 𝑚  utterances with a 
special symbol [SEP] as the delimiter. Then, they as a whole 
are fed into the BERT component to generate a cross-utterance 
history-aware embedding (viz. [CLS] vector) of the hypothesis. 
Along this same vein, the resulting embeddings of all the N-best 
hypotheses are spliced together to be fed into the FFN 
component to output a prediction score for each hypothesis for 
the reranking purpose. Note also that the acoustic model score, 
language model score (i.e., n-gram or LSTMs) or their 
combination score for each hypothesis, obtained from ASR, can 
be concatenated together with the corresponding [CLS] vector 
of the hypothesis for feature augmentation. 

III. PROPOSED APPROACH 

Although BERT has been proven powerful in capturing the 
contextual information within an utterance or consecutive 
utterances, their ability of capturing the global information 
about the vocabulary and structure of a language is relatively 
limited. In this review, we explore the use of graph embeddings 
of historical utterances generated by graph convolutional 
network (GCN) to augment the embedding vector of a 
hypothesis generated from PBERT or HPBERT (cf. Section II-
B), with the goal to harness the synergistic power of BERT and 
GCN for ASR N-best hypothesis reranking.  

A. Fundamentals of GCN 

Recently, there has been a surge of attempts in the literature to 
extend neural networks to deal with arbitrarily structured graphs 
[28]. One of the prevailing paradigms is the family of GCN 
[23][29][30]. GCN is instantiated with a multilayer neural 
network (usually consisting of 2 layers) that employs 
convolution operators on a target graph and iteratively 
aggregates the embeddings of the neighbors for every node on 
the graph to generate its own embedding. A bit of terminology: 
consider a graph G = (V, E) that encompasses a set of nodes 
V = {𝑣!, 𝑣", … , 𝑣#}  and a set of edges E = {𝑒$,&} , where any 
given pair of nodes 𝑣$ and 𝑣& is connected by an edge 𝑒$,& with a 
certain weight if they have a neighborhood relationship (or share 
some properties). We can represent the graph with either an 
adjacency matrix or a derived vector space representation. 
Furthermore, the (diagonal) degree matrix D of the graph G is 
defined by D$,$ = ∑ A$,&& . For GCN equipped merely with a 
single-layer structure, the updated feature matrix of all nodes on 
G is calculated as follows: 

H(!) = 𝑅𝑒𝐿𝑈5A6XW)9, (1) 

where X ∈ ℝ#×+  is an input matrix that contains the 
corresponding m-dimensional feature vectors of all nodes in G, 
W ∈ ℝ+×, is a weight matrix to be estimated, A6 = D-

!
"AD-

!
"	is 

the normalized symmetric adjacency matrix for G . The 
normalization operation that converts A to A6  is to avoid 
numerical instabilities and exploding (or vanishing) gradients 
when estimating W  of the corresponding GCN model in 
response to G. Building on this procedure, we can extend to 
capture higher-order neighborhood information from G  by 
stacking multiple GCN layers: 

H($.!) = 𝑅𝑒𝐿𝑈5A6H($)W$9, (2) 

where 𝑖	denotes the layer number and H()) = X.  

 
 
Figure 3: A schematic description of a heterogenous graph 
that contains chunk and word nodes. 
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Figure 4: A schematic depiction of the incorporation of the 
GCN-based embedding vectors of the historical utterances 
as a whole into HPBERT for ASR N-best hypothesis 
reranking. 
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The authors of [23] first proposed semi-supervised learning 
of GCN for a node-level classification task. In addition, [29] 
regarded simultaneously documents and words of a text corpus 
as nodes to construct the corpus graph (a heterogeneous graph) 
and used GCN to learn embeddings of words and documents. It 
can capture global word co-occurrence information, given a 
limited number of labeled documents is provided. 

B. GCN-based Graph Embeddings for ASR N-best Hypothesis 
Reranking 

For its application to ASR N-best hypothesis reranking, the 
whole training process of GCN contains two primary stages. At 
the first stage, the entire LM training corpus is split into 
multiple non-overlapping chunks, each of which consists of a 
fixed number of consecutive sentences (e.g., 10 sentences). On 
top of the resulting chunks and the co-occurrence relationships 
among words in each chunk, we in turn construct a 
heterogeneous graph with chunk and word nodes. The co-
occurrence relationship among any pair of word nodes 𝑖 and 𝑗 
(with respect to a chunk or multiple chunks) is represented as 
an undirected edge with a weight that quantify their relatedness, 
which can be computed using a formula that is expressed by 
normalized point-wise mutual information (NPMI) [30][31]: 

where 𝑖  and 𝑗  denote arbitrary two distinct words; 𝑝(𝑤$) =
#0($)
#0

; 𝑝5𝑤$ , 𝑤&9 =
#0($,&)
#0

; #𝑊(𝑖)  and #𝑊(𝑖, 𝑗)  are the 
numbers of chunks respectively containing word 𝑖 and words 𝑖 
and 𝑗; and #𝑊 is the total number of chunks. Note also that 
NPMI has its value that ranges from -1 to 1: the higher the value 
the closer the semantic relation between two words 𝑖 and 𝑗, and 
vice versa. On the other hand, an arbitrary chunk node 𝑘 has an 
edge connecting to a word node 𝑖 if the word 𝑤$ is involved in 
the chunk 𝐶, , where the weight of the edge is simply 
determined by the frequency that 𝑤$ occurs in 𝐶,.  

At the second stage, the entire chunks of the training data are 
first clustered into a fixed number of groups using an off-the-
shelf clustering algorithm (e.g., the K-means algorithm [32]) 
and TF-IDF vector representations for individual chunks. Each 
chunk is in turn assigned to a specific group, which is regarded 
as a “pseudo” class for the chunk. The model parameters of 

GCN are trained with the cross-entropy objective function, 
which aims to minimize the discrepancy between the reference 
“pseudo” class and the prediction output of a one-layer FFN 
module that takes the GCN-based embedding vector of every 
training chunk (cf. Section III-A) as the input to predict its own 
“pseudo” class, as graphically illustrated in Figure 3. 

One the other hand, at test time (when performing ASR N-
best hypothesis reranking), the corresponding embedding 
vector of each historical utterance is first obtained by a folding-
in process that simply pools together the GCN-based 
embedding vectors of all words occurring in the topmost 
transcripts of the utterance. Following that, the GCN-based 
embedding vectors of all historical utterances as whole is a 
composition of the GCN-based embedding vectors of all 
historical utterances with an exponentially decayed weighting 
mechanism (the weight of the GCN-based embedding vector of 
an historical utterance is decayed exponentially with its 
distance from the historical utterance to the current sentence). 
Finally, the resulting GCN-based embedding vectors of all the 
historical utterances as whole is in turn appended to the BERT 
embedding of each hypothesis of the current sentence for the 
purpose of oracle hypothesis prediction. Figure 4 shows a 
graphical illustration of the incorporation of GCN-based 
embedding vectors of the historical utterances into HPBERT 
for ASR N-best hypothesis reranking. 

IV. EMPIRICAL EXPERIMENTS 

A. Experimental Setup 

We evaluate our proposed methods on the AMI benchmark 
meeting transcription database and task [33], while the baseline 
ASR system (which was employed to produce the N-best 
hypothesis list for any given utterance) was built with ASR 
toolkit Kaldi [34]. As to the AMI database, the speech corpus 
consisted of utterances collected with the individual headset 
microphones (IHM), while a pronunciation lexicon of 50K 
words was used. Table 1 shows some basic statistics of the AMI 
meeting corpus for our experiments. 

The ASR system employed in this paper adopted the 
hybrid DNN-HMM modeling paradigm. For acoustic modeling, 
our recipe was to first estimate a GMM-HMM acoustic model 
on the training utterances with their corresponding orthographic 
transcripts, and in turn used the prior distribution of the senones 
obtained from the GMM components, in conjunction with the 
LF-MMI training objective, to estimate the factorized time-
delay neural network (TDNN-F) acoustic model [35], which 
was taken as the seed model. The speech feature vectors were 
40 MFCC coefficients extracted from frames of 25-msec length 
and 10-msec shift, spliced with 100-dimensional i-vectors for 
speaker adaptation of TDNN-F. On the other hand, the 
language model we used for the first-pass, baseline ASR system 
was a trigram LM, trained on the transcripts of AMI training 
utterances. The trigram LM was estimated with Kneser-Ney 
(KN) smoothing [5] and had a vocabulary of 12k words. To 
validate the improvements of our proposed LM modeling 
approach and have a fast experiment turnover, we adopt ASR 

NPMI5𝑤$ , 𝑤&9 = −
1

𝑙𝑜𝑔𝑝5𝑤$ , 𝑤&9
𝑙𝑜𝑔

𝑝5𝑤$ , 𝑤&9
𝑝(𝑤$)𝑝5𝑤&9

, (3) 

Table 1: Basic Statistics of the AMI Meeting Corpus. 

Items Train Dev Eval 
# Hours 78 8.71 8.97 

# Utterances 108,104 13,059 12,612 

# Speaker Turns 10,492 1,197 1,166 

# Uttrs. Per (Spk. Turn) 10.30 10.91 10.82 

# Words Per Utterance 7.42 7.27 7.1 
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N-best hypotheses with size N=10 for all reranking experiments. 
The N-best hypotheses for each utterance were extracted from 
the lattice generated by the ASR system during the test time. 

B. Experimental Results 

In the first set of experiments, we assess the efficacy of 
augmenting the GCN-based embedding vectors of the historical 
utterances as a whole to PBERT for ASR N-best hypothesis 
reranking (denoted by PBERT+GCN), in relation to some 
strong baselines that rerank N-best hypotheses with the 
conventional LSTM- and bidirectional-LSTM-based LM 
methods [11][12] (denoted by LSTM and BLSTM for short, 
respectively) and PBERT, respectively. In our default setting 
for PBERT (also the same for HPBERT), we augment the 
BERT output embedding of each hypothesis with a log-liner 
combination of the acoustic model score generated by the ASR 
system and the language model probability score generated by 
the trigram LM interpolated with the LSTM-based LM. The 
corresponding results are shown in Table 2, where the word 
error rate (WER) result of the baseline ASR system is listed for 
reference. For PBERT+GCN, we report on the results obtained 
by using different numbers of immediately preceding 
utterances for history modeling involved in GCN (cf. Rows 5 to 
7). By looking at Table 2, we can make two noteworthy 
observations. First, PBERT offers a considerable improvement 

in terms of WER reduction over the conventional 
autoregressive LSTM- and BLSTM-based LM methods, which 
seems to confirm the feasibility of the PBERT-based reranking 
framework. Second, as historical sentences are made available, 
a substantial reduction of WER can be achieved by combing 
PBERT with GCN that makes additional use of different 
numbers of historical utterances. In particular, PBERT+GCN(1) 
stands out in performance, leading to a relative WER reduction 
of 1.3% over PBERT in isolation. This indeed demonstrates the 
efficacy of GCN-based embedding for historical sentences, 
which to some extent captures the global information about the 
vocabulary and language structure inherent in the historical 
utterances. 

In the second set of experiments, we move on to evaluating 
the utility of augmenting the GCN-based embedding vectors of 
the historical utterances collectively to HPBERT for ASR N-
best hypothesis reranking (denoted by HPBERT+GCN). The 
corresponding results are shown in Table 3, from which we can 
draw two important observations. First, when only one 
immediately preceding utterance is additionally made use for 
N-best hypothesis reranking, HPBERT(1) yields quite 
comparable performance to PBERT+GCN (cf. Row 5 of Table 
2). Second, by augmenting the GCN-based embedding vectors 
of the historical utterances collectively to HPBERT, we can 
obtain slight but consistent improvements over HPBERT in 
isolation when different numbers of historical sentences are 
involved. This also reveals that information distilled from 
BERT and GCN is complementary to each other, and their 
combination is useful for ASR N-best hypothesis reranking. 

As a side note in this section, we turn to study the 
performance levels of the BERT-based prediction framework 
(taking PBERT as an example) with regard to different numbers 
of ASR N-best hypotheses being considered, in comparison to 
that of two conventional autoregressive LM methods (i.e., 
LSTM and BLSTM). Consulting to Figure 5, we notice that the 
performance of LSTM and BLSTM is steadily improved when 

Table 2: The WER (%) results obtained by our proposed 
PBERT with GCN method for ASR N-best hypothesis 
reranking, in comparison to that of the LSTM- and 
BLSTM-based LM methods. 

Method WER (%) 
Baseline ASR 18.67 
LSTM 17.27 
BLSTM 17.00 
PBERT 16.48 
PBERT + GCN(1) 16.26 
PBERT + GCN(5) 16.29 
PBERT + GCN(10) 16.27 

 

Table 3: The WER (%) results obtained by HPBERT and 
HPBERT with GCN. 

Method WER (%) 
HPBERT(1) 16.24 
HPBERT(5) 16.16 
HPBERT(10) 16.15 

HPBERT(1) + GCN(1) 16.20 
HPBERT(5) + GCN(5) 16.14 
HPBERT(10) + GCN(10) 16.13 

 

  
 

Figure 5: The performance levels of PBERT as a function 
of different numbers of ASR N-best hypotheses being 
considered, in comparison to that of two conventional 
autoregressive LM methods (i.e., LSTM and BLSTM). 
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the number of ASR N-best hypotheses being considered for 
reranking become larger, while the relative improvements 
appear to diminish slowly. As to PBERT, it consistently 
outperforms the aforementioned two autoregressive neural 
LMs (viz. LSTM and BLSTM); however, its relative 
improvement reaches the maximum when the N is set to 40.  

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a novel and effective modeling 
approach to ASR N-best hypothesis reranking, which leverages 
GCN-based embeddings to represent historical utterances. GCN 
holds promise to capture the global information about the 
vocabulary and language structure inherent in the historical 
utterances. Experimental results on a benchmark meeting 
transcription task indeed show the practical utility of our 
proposed approach in comparison to some top-of-the-line LM 
methods. In future work, we envisage to explore more 
sophisticated techniques for better representation of contextual 
information that resides in a cross-utterance history for ASR. 
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