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Abstract—Probabilistic linear discriminant analysis (PLDA)
has been widely used in open-set verification tasks, such as
speaker verification. A potential issue of this model is that the
training set often contains limited number of classes, which makes
the estimation for the between-class variance unreliable. This
unreliable estimation often leads to degraded generalization. In
this paper, we present an MAP estimation for the between-class
variance, by employing an Inverse-Wishart prior. A key problem
is that with hierarchical models such as PLDA, the prior is placed
on the variance of class means while the likelihood is based on
class members, which makes the posterior inference intractable.
We derive a simple MAP estimation for such a model, and
test it in both PLDA scoring and length normalization. In both
cases, the MAP-based estimation delivers interesting performance
improvement.

I. INTRODUCTION

Probabilistic linear discriminant analysis (PLDA) [1], [2],
[3] has been extensively used in open-set verification tasks,
such as speaker verification [4], [5], [6]. It represents the
data with a linear Gaussian model, where the between-class
distribution is a Gaussian and the within-class distributions
of individual classes are homogeneous Gaussians. The pa-
rameters of this model involve a linear transform matrix M
and the between-class covariance of the data after the linear
transform, and they can be estimated by maximum likelihood
(ML) training. Once the model has been trained, it is possible
to decide whether two samples are produced from the same
class or from two different classes [1], and this decision is
optimal in terms of minimum Bayes risk (MBR) [7].

A potential problem of PLDA is the unreliable estimation
for the between-class covariance, denoted by SB . In many
applications, the number of classes in the training data is
limited. Take speaker verification as an example, the largest
open-source dataset VoxCeleb contains 7,000+ speakers. Con-
sidering the high dimensionality of the data (e.g., speaker vec-
tors in speaker verification, whose dimension is 400-600), it is
difficult to estimate a reasonable between-speaker covariance
with maximum likelihood training.

To have an intuition, we take a simulation experiment by
sampling n samples from a Gaussian distribution and a Lapla-
cian distribution, and then compute the ML-based variance
estimation for each sampling. We plot the variance’s variance
to show the reliability of the estimation. As shown in Fig. 1,
when the number of samples n is small, the variance’s variance
is large, indicating that the estimation is highly unreliable. This

conclusion is more clear with the Laplacian distribution, due
to its heavy-tail property.

Fig. 1. Variance’s variance of n samples from Gaussian and Laplacian
distributions. For each distribution, we firstly sample n data points, and
then compute their variance σ (i.e., ML-based estimation for the underlying
true variance). This process repeats 10,000 times and the variance of the
10,000 σ values is computed. The x-axis is the number of samples n, and
the y-axis is the value of variance’s variance. For simplicity, the data points
are one-dimensional. For the sake of comparison, the true variances of two
distributions are both set to 1.0.

For PLDA, the limited number of classes leads to the same
unreliable estimation for the between-class covariance SB .
For speaker verification, the distribution of speaker vectors is
known to be heavy-tailed [8], which makes the ML estimation
for SB even more unreliable. Moreover, the dimensionality of
speaker vectors is often as high as 400-600, which further
exaggerates the problem.

In this paper, we propose a robust estimation for the
between-class variance SB , by placing an Inverse-Wishart
prior on SB and then conduct maximum a posterior (MAP)
estimation. At the first glance, the MAP estimation seems
trivial if the prior and the associated conditional likelihood
are given. However, for hierarchical probabilistic models such
as PLDA, it is much more convolved. This is because the
prior is placed on the covariance of the class means while the
likelihood is based on the class members. This complication
leads to intractable inference for SB . We will prove that
under some mild conditions, the MAP estimation can be
reformulated to a simple linear interpolation of SB derived
by the standard PLDA and a prior covariance.
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II. THEORY

A. Preliminary of PLDA

We consider the two-covariance form of the PLDA
model [3], which assumes a linear Gaussian as follows, where
k indexes the class, and i indexes samples of a particular class:

xxxki = µµµ0 + Mµµµk +nnnki, (1)

µµµk ∼ N (0, diag(εεε)), (2)

nnnki ∼ N (0, I), (3)

where we assume M is of full rank. By this assumption,
the within-class covariance is the identity matrix I, and the
between-class covariance is computed as follows:

SB = Mdiag(εεε)MT . (4)

The likelihood of the data of a particular class k can be
computed as follows:

p(xxx1,xxx2, ...,xxxnk) =

∫
p(xxx1, ...,xxxnk |µµµk)p(µµµk)dµµµk

=

∫ nk∏
i=1

p(xxxi|µµµk)p(µµµk)dµµµk. (5)

Since p(xxxi|µµµk) and p(µµµk) are both Gaussian, it is easy to
show that p(xxx1,xxx2, ...,xxxnk) is Gaussian and can be computed
efficiently. Collecting all the data of K classes, the likelihood
function can be computed as follows:

L(εεε,M,µµµ0) =

K∏
k=1

p(xxxk1 , ...,xxx
k
nk

), (6)

where εεε,M,µµµ0 are the parameters. Maximizing this function
with respect to these parameters leads to a maximum likeli-
hood (ML) training.

Once the model has been trained, it can be employed to
perform verification tasks. According to the hypothesis test
theory [9], the following likelihood ratio (LR) is optimal in
terms of Bayes risk, when used to judge whether a test sample
xxx belongs to the class represented by the enrollment samples
{xxx1, ...,xxxn}:

LR =
p(xxx,xxx1, ...,xxxn)

p(xxx)p(xxx1, ...,xxxn)
. (7)

Thanks to the linear Gaussian form of the model, the LR
score has a closed form and can be computed efficiently [1],
[2].

B. MAP estimation for SB
Suppose an Inverse-Wishart prior on εεε [10]:

p(εεε;φφφ, ν) =
1

Z
(

p∏
j=1

εj)
− ν+p+1

2 exp{−1

2

p∏
j=1

φjε
−1
j }, (8)

where p is the dimension of the data and Z is a normalization
term. If there are n observations following a Gaussian, it
is easy to derive that the MAP estimation for εεε is given as
follows [10]:

εεεMAP =
φφφ+ nεεεML

ν + n+ p+ 1
, (9)

where εεεML denotes the ML estimation for εεε with n observa-
tions.

If we place an Inverse-Wishart prior on SB of the PLDA
model, the graphical representation is shown in Fig. 2. In
this case, the interaction between ε and the observation x is
indirect, and there are no i.i.d. Gaussian samples can be used
to estimate εεεMAP by (9). One possibility is to use the likelihood
function (5) as the conditional probability, and derive the MAP
estimation as follows:

εεεMAP = arg max
εεε
p(εεε;φφφ, ν)

∏
k

p(xxx1,xxx2, ...,xxxnk |εεε) (10)

𝜙
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Fig. 2. Graphical model of PLDA with an Inverse-Wishart prior on the
between-class variance εεε.

Since
∏
k p(xxx1,xxx2, ...,xxxnk |εεε) involves an undetermined pa-

rameter M and needs to marginalize on µµµk, the inference for
εεεMAP is intractable. Although a variational approach can be
used [11], the iterative process leads to increased computa-
tional load. We will show that a simple MAP estimation can
be derived by using±ε derived from the standard PLDA, under
mild conditions.

Proposition 1. If every class involves n training samples,
and PLDA has been well trained, the between-class co-
variance ε can be written as ε =

∑
k x̄′

k

K − 1/n, where
x̄xx′k = 1

n

∑n
i=1 M

−1(xxxki −µµµ0).

Proof:
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Since the PLDA model has been well trained, x′ =
M−1(x − µ0) show a regulated distribution: the between-
class variance is diag(ε), and the within-class variance is I.
Considering a particular class, the joint probability of the class
members is a function of ε. Considering a particular dimension
j, the probability is given by:

p(x1, ...,xn; εj)

∝
∫

1

ε
1/2
j

exp
{
− 1

2εj
µ2
} n∏

i

exp
{
− 1

2
(x′ij − µ)2

}
dµ

=
1

ε
1/2
j

∫
exp

{
− 1

2εj
µ2 − 1

2

∑
i

(x′ij − µ)2
}

dµ

=
1

ε
1/2
j

∫
exp

{
− (1 + nε)

2εj
((µ− εj

(1 + nεj)

∑
i

x′ij)
2

−
ε2j

(1 + nεj)2

∑
i

(x′ij)
2)
}

dµ

∝ 1

(1 + nεj)1/2
exp

{ n2εj
2(1 + nεj)

(x̄′j)
2
}

(11)

Considering all the classes:

L(εj) =

K∑
k=1

ln p(xk1 , x
k
2 , ..., x

k
n; εj)

= −K
2

ln(nεj + 1) +
n2εj

2(1 + nεj)

∑
k

(x̄′jk)2 + const

Take derivative of L(εj) with respect to εj and set it to 0:

∂L(εj)

∂εj
= −K

2

n

nεj + 1
+

1

2

∑
k

(x̄′jk)2n
2(1 + nεj)− n3εj

(1 + nεj)2
= 0

(12)
A simple computation shows:

εj =

∑K
k=1(x̄′jk)2

K
− 1

n
(13)

Since all the dimensions of x′ are independent, we have:

ε =

∑K
k=1(x̄′k)2

K
− 1

n
(14)

Obviously, if n is large, the estimation for εεε approaches to:

ε ≈
∑
k(x̄′k)2

K
, (15)

which can be interpreted as an ML estimation for the covari-
ance of a Gaussian distribution represented by the K virtual
samples {x̄′k}.

Since εεε derived by PLDA is equivalent to εεεML derived with
the K virtual samples {x̄′k}, we can use these virtual samples
as the observations of the underlying Gaussian model, and
derive the MAP estimation for the covariance of these samples:

εεεMAP =
φφφ+Kεεε

ν +K + p+ 1
, (16)

where εεε is obtained from the standard PLDA.
By defining appropriate φφφ and ν, the above equation can be

reformulated as a simple linear interpolation:

εεεMAP =
αεεε0 +Kεεε

α+K
, (17)

where εεε0 can be interpreted as a prior covariance, and α is a
hyper-parameter that represents the number of virtual samples
associated with εεε0. We therefore derived a simple form of
MAP estimation for the between-class variance with PLDA.

We highlight that although the final result (17) looks simple,
it should not be regarded as trivial. In fact, to derive such a
result, we have assumed that all the classes involve the same
number of samples. This is even not true in most practical
usage, demonstrating that (17) is not as straightforward as the
first glance. 1

C. Applied to length normalization

The MAP-estimated ε (and hence SB) can be used directly
in PLDA scoring, which we will call PLDA/MAP. Moreover,
the more robust SB can be used to improve length normaliza-
tion (LN) as well. LN is a simple and effective trick that has
been widely used in speaker verification [12]. The key idea is
that for a high-dimensional Gaussian distribution, most of the
samples should concentrate on an eclipse surface defined by
the covariance. Suppose the distribution has been aligned to
the axes, the eclipse surface will be as follows:∑

j

x2
j

λj
= p (18)

where λj is the variance of the j-th dimension. In the PLDA
model, this variance consists of the between-class variance εj
and the within-class variance σ = 1, i.e., λj = εj + 1. LN
scales the speaker vectors to this surface if they are not, with
the scale factor computed by:

r =

√
p√∑
j

x2
j

εj+1

. (19)

It has been shown that this scaling can greatly improve the
Gaussianality of the speaker vectors, hence making them more
suitable for PLDA modeling.

Here we encounter the same problem as in PLDA scoring:
if εεε is not well estimated, the scaling will be incorrect.
In particular for speaker vectors aligned to the directions
corresponding to a large εj , the scaling tends to be aggressive.
The MAP-based estimation for εεε discounts large variance and
thus is expected to alleviate this problem. For that purpose,
we simply use εεεMAP to compute the scale factor r. We will
call the revised length normalization as LN/MAP.

1Fortunately, one can verify that if each class contains sufficient samples,
(15) remains correct and hence (17) holds.
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III. RELATED WORK

Brummer et al. [13] presented the initial idea of Bayes
PLDA, with the aim to overcome the shortage associated with
the point estimation for the parameters in the conventional
ML-based PLDA model.

Villalba et al. [11] employed a Bayes approach to improve
speaker verification with i-vectors [14]. This approach was
further extended to deal with domain adaptation, where the
PLDA parameters obtained in one domain were used as the
prior when training PLDA in a new domain [15], [16]. Al-
though theoretically interesting, it relies variational inference
in both training and test, which is not very friendly and so is
rarely used.

The Inverse-Wishart distribution was generally used as the
prior for distance/correlation matrix. For example, Fang et
al. [17] employed this prior to regularize the metric learning
with an i-vector system. Ito et al. [16] employed this prior
to adapt the covariance in the GMM-UBM architecture for
speaker verification.

IV. EXPERIMENTS

We evaluate the proposed approach by a speaker verification
task, following the deep speaker embedding framework [18],
[19], [20]. Given a speech segment, a speaker vector is pro-
duced by a deep neural network which consists of frame-level
feature extractor and utterance-level pooling. In this paper, we
employ the x-vector model [21] to produce the speaker vectors.
This model is trained using the Kaldi toolkit [22], following
the SITW recipe 2. The dimensionality of the x-vectors was
set to 512. Once the speaker vectors are obtained, a PLDA
model with LDA dimension reduction is trained and employed
to score the test trials. Note that our research goal here is
to demonstrate the MAP-based estimation for SB rather than
present a SOTA speaker verification system. For this purpose,
using a public recipe in Kaldi is a reasonable choice. Readers
can refer to [23], [24] for SOTA performance on the same
task.

A. Data

Three datasets were used in our experiments: VoxCeleb,
SITW, and HI-MIA. Details are as follows:

VoxCeleb [25], [26]: An open-source speaker dataset col-
lected from media sources by University of Oxford. This
dataset contains 2,000+ hours of speech signals from 7,000+
speakers. This dataset was used to train the x-vector model
and the PLDA model used in the test on the SITW dataset.

SITW [27]: A standard evaluation dataset consists of 299
speakers. The core-core trials built on the SITW.Dev set was
used to optimize the prior weight α in the MAP estimation
of (17). The core-core trials built on the SITW.Eval set were
used for evaluation.

HI-MIA [28]: An open-source text-dependent speaker
recognition dataset. All the speech utterances contain the word
‘Hi MIA’, recorded by a microphone 3 meters away from the

2https://github.com/kaldi-asr/kaldi/tree/master/egs/sitw/

speaker. The development set (used for training PLDA and
estimating the MAP prior weight) involves 5,062 utterances
from 254 speakers, and the evaluation set involves 1,665
utterances from 86 speakers.

B. Behavior of the MAP estimation

In the first experiment, we study the behavior of MAP
estimation using the SITW.Dev core-core trials. We set the
prior covariance εεε0 = 1 in (17), and set K as the number of
speakers used for training the PLDA model, which is 6,300
in our experiment. The performance of the PLDA/MAP on
SITW.Dev in terms of equal error rate (EER) is reported in
Fig. 3, where the prior weight α changes from 0 to 7,000. Note
that PLDA/MAP with α = 0 is just the conventional PLDA.
It is clear to see that PLDA/MAP can substantially improve
system performance with an appropriate α. Notice that there
is an optimal α that best trades off the contribution of the prior
and the data.

Fig. 3. EER results of PLDA/MAP on SITW.Dev with different α.

C. Detailed results

In this experiment, we choose α using the development
sets (SITW.Dev for SITW.Eval test, and HI-MIA.Dev for HI-
MIA.Eval test) based on the EER results with PLDA/MAP, and
then apply the optimal α to both PLDA/MAP and LN/MAP.
The EER results are reported in Table I.

Firstly, we observe that in almost all the cases, PLDA/MAP
outperforms the conventional PLDA. The general improve-
ment obtained by PLDA/MAP implies that the MAP estima-
tion indeed delivers a better between-class covariance.

Secondly, we found that in most tests, LN/MAP clearly
outperforms the standard LN. This double confirms that the
MAP estimation produces a better between-class covariance.
Moreover, since the improvement was obtained by using the
prior weight α selected based on PLDA/MAP, we conclude
that the priors for PLDA/MAP and LN/MAP are consistent.

Thirdly, we observe that in the LDA[512]-dim tests,
PLDA/MAP + LN (system 5) generally outperforms PLDA +
LN (system 3), but this is not always the case in the LDA[150]-
dim tests. For example, in the SITW test, PLDA/MAP + LN
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TABLE I
EER(%) RESULTS WITH DIFFERENT SETTINGS OF PLDA AND LN

No. Model SITW.Dev SITW.Eval HI-MIA.Dev HI-MIA.Eval

LDA[512]

1 PLDA 3.697 4.019 1.080 0.891
2 PLDA/MAP 3.466 3.909 0.945 0.810

3 PLDA + LN 4.005 4.647 1.484 1.296
4 PLDA + LN/MAP 3.928 4.483 1.350 1.134
5 PLDA/MAP + LN 3.889 4.429 1.080 0.891
6 PLDA/MAP + LN/MAP 3.812 4.374 1.080 0.891

LDA[150]

7 PLDA 3.273 3.800 1.215 0.972
8 PLDA/MAP 3.196 3.745 1.080 0.891

9 PLDA + LN 2.965 3.362 1.350 1.134
10 PLDA + LN/MAP 3.003 3.335 1.350 1.053
11 PLDA/MAP + LN 3.003 3.417 1.215 1.134
12 PLDA/MAP + LN/MAP 2.926 3.417 1.080 0.972

(system 11) performs worse than PLDA + LN (system 9). A
possible reason is that with the LN operation, the data statistics
has been changed, and so the MAP estimation based on the
original statistics may be suboptimal. In general, LN/MAP is
more safe than PLDA/MAP as it can improve performance in
almost all the cases, though in many cases, PLDA/MAP can
deliver more improvement than LN/MAP.

Finally, it seems that combining PLDA/MAP and LN/MAP
(system 6) may lead to performance improvement in some
cases, but this is not always the case. The improvement, even
if it is observed, is not significant. This can be explained again
by the suboptimum of the MAP estimation for the data after
length normalization.

V. CONCLUSIONS

We presented a simple form of MAP estimation for the
between-class covariance in the PLDA model. Our derivation
shows that under mild conditions, the MAP estimation can be
formed as a linear interpolation of the ML estimation obtained
by standard PLDA and a prior covariance. We employed
the MAP-estimated between-class covariance to both PLDA
scoring and length normalization, and interesting performance
improvement was obtained. Future work will investigate better
strategies to combine MAP estimation and length normaliza-
tion.
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