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Abstract—We investigate and compare several low-complexity
self-attention mechanisms applied to the problem of acoustic
event detection. Self-attention has proved to be all that is needed
to make leaps in several domains, but at a computational and
memory cost quadratic in the length of the input sequence.
This problem has been recently addressed by several works
that reduced the complexity: linear attention, top-k attention,
clustered attention, attention-free Transformer, and FNet. We
replace the conventional self-attention block of an acoustic event
detection model by these low complexity ones and evaluate the
performance on Task 4 of the DCASE Challenge 2021. We find
that at the cost of marginal performance drop the inference
time was significantly sped up for sequences 30 s and longer.
We conclude that for all practical purposes, one of these low-
complexity attention mechanism should be used instead of the
conventional one.

I. INTRODUCTION

Understanding the various sounds around us is being ac-
tively researched for various applications such as robot au-
dition, hearing assistance, and street surveillance [1], [2],
[3], [4]. Acoustic event detection, which is the recognition
and detection of environmental sounds, is a key technology
for such applications. Acoustic event detection is undergoing
remarkable progress due to the development of deep learning
techniques and the construction of huge datasets such as
Audioset [5]. The annual DCASE event with specialized
workshops and competitions has also helped its development.

Acoustic event detection is a supervised classification tech-
nique that uses detection models for predefined event classes
to detect which event class occurred where in the input
speech. Much research has been conducted on how to build
detection models, such as mel-frequency cepstrum coefficients
and Gaussian mixture models based on speech recognition
techniques [6], and factor decomposition models such as
non-negative matrix factorization focusing on the overlap of
sounds [7], [8], [9]. With the development of deep learn-
ing, lots of models, such as convolutional neural networks
(CNNs) [10], long short-term memory (LSTM) [11], [12] and
convolutional recurrent neural networks (CRNNs) [13], [14],
have shown high detection performance. In particular, CRNN-
based models have been employed as a powerful baseline
method in many studies.

More recently, methods based on Transformer [15] have
shown significant improvements over the CRNN-based mod-
els [16], [17], [18]. In particular, in the recent DCASE

Challenges, methods based on Conformer [19], [20], a variant
of Transformer, have shown top performance. Most of the
Transformer-based methods are based on replacing the RNN
part of CRNN-based methods with Transformer encoders.
Transformer-based methods take the spectrum of the input
audio, transform it into a sequence of high-dimensional repre-
sentations by a CNN, and extract frame-level features based on
global relations in the sequence by the Transformer encoder.
The key to capturing the global relations within a sequence
is the self-attention mechanism of the Transformer encoder.
The self-attention mechanism projects the input sequence into
three types of series: query, key, and value. Based on the
projected query and key, the relationship between each frame
is represented as a weight matrix, and the values of each frame
are transformed based on the weight matrix.

Self-attention has proved to be all that is needed to make
leaps in several domains, but at a computational and memory
cost quadratic in the length of the input sequence. This prob-
lem has been recently addressed by several works that reduce
the complexity [21], [22]. The linear attention method replaces
softmax by the linear product of feature maps computed from
the query and key matrices. The top-k attention [23] sparsifies
the attention matrix by zeroing all entries but the k largest of
each row. Clustered attention [24] applies K-means clustering
to the query matrix and then attention only for the cluster cen-
ters. Attention-free transformer [25] replaces the full attention
by a row-wise operation that requires less memory. It can be
further simplified to have linear computational complexity too.
Finally, FNet [26] drastically simplifies attention by replacing
altogether the operation by a 2D discrete Fourier transform
(DFT), followed by a row-wise 2-layers feed-forward network.

In this paper, we investigate and compare those low-
complexity self-attention mechanisms applied to the problem
of acoustic event detection.

II. AED WITH TRANSFORMER

A. Transformer

Let us consider acoustic event detection (AED) with C event
classes. AED is a multi-label classification problem that takes
spectrogram of the input audio V ∈ RT×F and estimates the
event classes Y ∈ RT×C occuring in each time frame T ,
where T , C and F are the number of time frames, classes
and feature dimensions, respectively.
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Transformer-based model consists of the CNN layers as
feature extractor followed by N stacked Transformer encoder
layers. The CNN layers extract high-dimensional representa-
tion X0 ∈ RT×D from input spectrogram V. The Transformer
encoder layers takes the CNN output as input and transform
the input based on the self-attention mechanism. The Trans-
former encoder consists of N stacked encoder layers, and each
encoder layer consists of two sub-layers, a multi-head attention
MHA(·) and a position-wise feed-forward network FFN(·).
Input of each encoder layer is the output of the previous layer,
where input and output are sequences of the same dimensions.
Let the input and output of the n-th encoder layer be denoted
Xn−1 ∈ RT×D and Xn ∈ RT×D, respectively. The operation
of the n-th encoder layer is described as follows:

Hn = MHA(Xn−1) (1)
Xn = FFN(Hn) (2)

where H is a latent representation extracted by the multi-head
attention (MHA), and FFN(·) applies a nonlinear transfor-
mation to each time frame of the sequence H. For stable
training, each sub-layer has layer normalization [27] and
residual connections [28]. The final output XN of the N
encoder layers is fed to the subsequent decoder.

Finally, XN is transformed by the classifier into Ŷ ∈ T C ,
estimation of Y.

Y = Classifier (XN ) (3)

There are several ways to design a classifier, most of which
use a full coupling layer and a sigmoid function, which is also
used in this paper.

The parameter training of the network is generally based on
a cost function consisting of sigmoidal cross-entropy.

L = SCE
(
Ŷ,Y

)
(4)

In recent years, there has been a focus on weakly labeled
learning, where there is no timestamps for occurrence of
events. The weak labels indicate the presence or absence of
an event in each audio clip, but not at what time the sound
has occurred, so that this cost function cannot be used in weak
label training. Other methods such as semi-supervised training
like mean-teacher and domain adaptation are employed for the
weak label training.

B. Self-attention mechanism

The MHA(·) performs scaled dot-attention multiple times
in parallel (i.e., multi-head) and aggregates the individual at-
tention results. The scaled dot-product attention is formulated
as an operation on three matrices; query Q ∈ RT×dq , key
K ∈ RT×dk and value V ∈ RT×dv . In this paper, dimensions
of all matrices are set to be the same, dq = dk = dv = d.
The similarity between Q and K is first calculated by inner
product and normalization with the softmax function. Then,
V is summarized as a weighted sum based on the similarity:

Attention(Q,K,V) = softmax

(
QK>√

d

)
V, (5)

In multi-head self-attention, the matrices query, key, and value
of each attention-head h are obtained by applying linear
transformations to a single input X;

Q : X
(q)
h = XW

(q)
h (6)

K : X
(k)
h = XW

(k)
h (7)

V : X
(v)
h = XW

(v)
h (8)

Using these matrices, Eq. 5 can be rewritten as follows:

SelfAttention(X) = softmax

(
X(q)X(k)>

√
d

)
X

(v)
h , (9)

X(q)X(k)> can be interpreted as the similarity between each
time frame in the sequence, and this information is the key
for the Transformer to encode the input.

The computational and memory cost for the calculation of
attention scores are on the order of quadratic in the length of
the input sequence, O(T 2d).

III. LOW-COMPLEXITY SELF-ATTENTION MECHANISMS

Recently, a number of techniques have been proposed to
reduce the quadratic computational and/or memory require-
ments. We give here a brief introduction to the techniques
investigated in this paper.

A. Linear Transformer

Linear attention relies on approximating the softmax op-
eration of the attention by a linear dot-product of feature
maps [29]. Specifically, the t-th row of the linear attention
is given by

φ(qt)
>∑T

t′=1 φ(kt′)v
>
t′

φ(qt)>
∑T

t′=1 φ(kt′)
(10)

where qt, kt, and vt are rows of Q, K, and V, respectively.
The function φ : d→ d′ computes the feature map for a single
row. Thus, the complexity of linear attention is O(Td2), which
is indeed linear in the sequence length, and computationally
advantageous when d� T .

B. Top-k attention

The Top-k attention mechanism forces attention onto the
most relevant parts of the sequence only by selecting the
k largest entries in each row of the attention matrix [23],
and ignoring all others. Originally motivated by a lack of
focus of the conventional attention, improved training and
testing times where also reported. While full computation of
the attention matrix is still required, zeroing out most of its
entries significantly reduces the cost of the subsequent (sparse)
matrix-matrix product to O(kTd).
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C. Clustered attention

Clustered attention brings down the complexity of attention
to linear by clustering the rows of the query matrix Q
with the K-means algorithm improved by locality-sensitive
hashing [24]. Then, each of the time position of the input
sequence only attends to one of C cluster centers and com-
plexity is thus reduced to O(CTd). The resulting matrix V is
built by repeating for all cluster members the attention value
of its center. The complexity of the clustering operation is
O(TCL+CBL+TdB) where L is the number of iterations
of K-means, and B is the number of bits for the hashing. We
note the constant overhead introduced.

D. Attention free Transformer

The attention free transformer (AFT) network replaces
attention by a mechanism that can be applied time position
wise to the input sequence [25]. This removes the need to
compute and store the T × T attention matrix. Specifically,
the t-row of the output is computed as

σ(qt)�
T∑

t′=1

exp(kt′ + bt,t′)∑T
t′ exp(kt′ + bt,t′)

� vt′ , (11)

for t = 1, . . . , T , where qt, kt, and vt are the rows of the
matrices represented by the upper-case corresponding letter.
A number T 2 of biases bt,t′ is introduced. Equation 11 is
refered to as AFT-full. While it avoids computing and storing
the attention matrix QK>, it introduces T 2 biases and its
asymptotic computational complexity is the same as that of
regular attention. Fixing bt,t′ = 0 for all positions yields a
reduced complexity method termed AFT-simple with linear
time complexity. The reduction is due to the softmax on the
columns of K being computed only once.

E. FNet

FNet gets rid of the attention mechanism altogether and
enforces a global mixing of the time steps via the DFT [26].
The input X is mapped to a matrix of the same size by a
2D DFT. Then, each row of the transformed matrix is passed
through a 2 layers feed forward network. These two operations
are repeated for several layers. This approach is very efficient
because the DFT layer does not require any memory storage
and can use the efficient fast Fourier transform algorithm with
complexityO(Td(log T+log d)). Furthermore, the complexity
of the feed forward network is linear in the length of the
sequence T , and its storage requirements independent of it.

IV. EXPERIMENTS

Experiments were conducted to investigate the effects of
different self-attention mechanisms on AED performance. All
experiments were conducted using the same transformer-based
model. The evaluation task was set as DCASE2021 task4 and
the performance of weakly supervised AEDs by each method
was compared. All the transformer parts were implemented
using the Fast Transformer toolkit [29], [24], except for FNet.

TABLE I
EXPERIMENTAL CONDITIONS

Transformer parameters

attention dim 144
# heads 4
eunits(=dff ) 576
# Encoders 4
dropout 0.2

Training settings

Batch size 32
Iteration steps 20,000
Optimizer Adam
Learning rate schduling noam [15]
Learning rate scale 0.02
Warm up steps 4,000

A. Datasets

The dataset of DCASE2021 task4 [30], [31] was used in
the experiments. The dataset is composed of 10 sec audio
clips recorded in domestic environments or synthesized using
Scaper [32] to simulate a domestic environment. The event
classes to be detected consist of 10 classes that represent a
subset of Audioset [5]. In our experiments, all clips were
downsampled to 16 kHz beforehand.

There are 3 different splits of the training dataset: Labeled
training set, Unlabeled in domain training set and Synthetic
set with strong annotations.

Weakly-labeled training set
1578 clips (2244 class occurrences) for which weak
annotations.

Unlabeled in domain training set
14412 clips without any annotations. The clips are
selected such that the distribution per class (based
on Audioset annotations) is close to the distribution
in the labeled set.

Synthetic strongly labeled set
10000 clips generated with the Scaper soundscape
synthesis and augmentation library. The clips are
generated such that the distribution per event is close
to that of the validation set.

The validation set contains 1168 clips and is annotated with
time-stamped labels. The domain of the validation set is the
same as that of the weakly-labeled training set.

B. Experimental conditions

The input spectral features were 64-dimensional log-mel
spectrogram extracted with window and hop lengths of 1024
and 323 points, respectively. The length of input frames was
fixed to 496 frames (10 seconds). Audio clips shorter than 10 s
were zero-padded. Prior to input to the network, the features
were normalized for each bin as follows:

V̄ = (V − µ̄) /σ̄, (12)

where µ̄ and σ̄ represent mean and variance calculated from
the training dataset, respectively.
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TABLE II
EXPERIMENTAL RESULTS

F1-score Complexity Memory RTF (×1000) # of params
Segment-based Event-based 10 sec clip 30 sec. clip 1 min. clip (Transformer)

Transformer (full attention) 0.711 0.500 T 2d T 2d 8.454 7.922 8.833 1003104

Top-K (k = 16) 0.710 0.462 T 2d kTd 9.387 10.163 11.851 1,003,104
Top-K (k = 32) 0.700 0.473 T 2d kTd 9.775 10.314 12.423 1,003,104
Top-K (k = 64) 0.715 0.495 T 2d kTd 9.995 10.642 12.769 1,003,104
Clustered (C = 16) 0.702 0.459 CTd CTd 10.132 8.760 8.626 1,003,104
Clustered (C = 32) 0.715 0.468 CTd CTd 10.294 8.771 8.432 1,003,104
Clustered (C = 64) 0.715 0.469 CTd CTd 11.188 9.334 8.919 1,003,104
AFT-full 0.697 0.457 T 2d Td 14.968 27.567 47.719 1,527,392
AFT-Simple 0.693 0.458 Td Td 7.884 7.657 7.621 1,003,104
Linear Transformer 0.704 0.473 Td2 Td 7.880 7.141 7.391 1,003,104
FNet 0.681 0.411 Td log Td Td 7.534 7.031 7.429 668,736

Table I shows the network configuration and training pa-
rameters. We used a network with 7 CNNs layers and 4
Transformer layers for baseline, and only changed the part
calculating the self-attention to compare the performance. The
feature representation layer structure was the same as the CNN
part of [33]. Note that the length of feature representation layer
outputs was reduced to 1/8 by max-pooling. In this study, we
set the Transformer encoder parameters as follows: attention
units were set to 144 (d = 144), the number of heads was 4
(h = 4), internal position-wise feed-forward units were set to
576, and the dropout ratio was set to 0.2. The batch size was
set to 64.

In order to use the weakly labeled audio clips, we used
a method based on mean-teacher [34], which is a semi-
supervised training method. The mean-teacher method is a
widely used technique, such as in the baseline method and
many other methods in the DCASE Challenges.

The evaluation metrics were segment-based and event-based
F-scores. The calculation of each value was performed using
the SED-Eval toolkit [35]. Segment-based F-scores are calcu-
lated whether events are correctly predicted in each segment,
where the segment length is 1 second. Event-based F-scores
are calculated based on the onset/offset of the predicted result.
In this work, we set allowable length to prediction error of
200 ms for onsets and 200 ms / 20 % of event length for
offsets. Model parameters of all methods were trained on
20,000 iterations and evaluated on their performance on the
DCASE2021 task4 validation set.

We also measured the real time factor (RTF) during in-
ference. The RTF was measured as the time it took to
infer a series of 10 seconds, 30 seconds, and 1 minute in
length, respectively. Inference for each length sequence was
performed 100 times, and the average value was used as the
RTF. All training is performed on a single V100 GPU and
RTF is measured by decoding with a batch size 1 on a single
Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz using a single
thread.

C. Experimental Results

Table II shows the experimental results. Both the top-k
and clustered attention show comparable performance to full
attention. These methods focus on the sparsity and redundancy

of attention masks and are able to represent attention masks
with low memory cost. However, the complexity for the top-
k attention is still on the same order as the full attention,
since the full attention score needs to be computed once to
perform top-k search. The clustered attention also shows slow
inference speed for the 10 sec. clips due to the overhead for the
clustering. Since the overhead is constant, the RTF decreased
as the series gets longer. It is expected to show faster inference
than full attention for longer sequences with T � C.

The Linear Transformer enables 16.3% faster inference for
1 min. sequences while degrading segment-based F-score by
0.98% and event-based F-score by 5.4% compare to the full-
attention. The calculation of attention score is linear to the
sequence length, and the speed does not decrease even for
inference on long sequences.

Although FNet was not as good as the other methods in
terms of performance, the inference speed was fast as the linear
Transformer which shows 15.8% faster than the full attention.
The most notable feature of FNet is the small number of
parameters. FNet removes the attention operation and enforces
a global mixing of the time steps via the DFT. Therefore, it is
constructed with less than 70% of the number of parameters
of other methods.

V. CONCLUSION

In this paper, we investigate several low-complexity atten-
tion mechanism methods for transformer-based acoustic event
detection and evaluate their performance. In the experiments,
the characteristics and performance of each method are dis-
cussed, and it is found that linear Transformer in particular can
speed up the inference speed by 16.3% with small performance
degradation. We conclude that for all practical purposes, one of
these low-complexity attention mechanism can be used instead
of the conventional one.
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