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Abstract—In daily communication, several people sometimes
talk simultaneously, resulting in overlapped speech segments.
Such segments challenge machine listening tasks like speaker
diarization or speech recognition. This paper presents a speaker
diarization framework where speaker count, a building block
to predict the number of active speakers in each analyzing
audio window, is integrated. Such speaker count block can
be developed independently with existing speaker diarization
systems; its output is then used in the re-segmentation step
of existing systems to better label active speakers in each
considered window. We further investigate the effect of analyzing
window size in diarization performance in an oracle setting. Our
preliminary theoretical analysis shows that the overlap speech
detection, a special case of speaker count, is helpful to reduce
diarization error rate when the window size is small enough.
Finally, experiment results obtained from two state-of-the-art
diarization systems on a benchmark dataset confirm the potential
benefit of the proposed approach.

I. INTRODUCTION

In natural conversations, there are often instances where
multiple people speak at the same time. Such overlapped
speech instances often be problematic for automatic speech
processing tasks such as speech recognition, blind source
separation, and speaker diarization. As an example in speaker
diarization, which aims to answer the question “Who spoke
when?” [5], conventional clustering algorithms tend to output
only the most likely spoken person and miss the others in
overlapped segments. Thus, even the best performing systems
struggle to identify who are speaking in real-world situation
with the presence of noise and highly overlapped speeches
[14], [15], [22], [23].

This paper addresses speaker diarization task in multi-
speaker audio recordings. Conventional approach are often
based on segmenting the input audio stream into uniform
speech segments with the help of the voice activity detection
(VAD), followed by extracting fixed-length speaker embed-
dings from those segments, and finally performing speaker
clustering over these embeddings [2]. Some recent systems
use more building blocks such as overlap detection and speaker
change detection to support clustering algorithm [28], [8]. It is
worth noting that there have been several studies on overlapped

speech detection and its application on speaker diarization. For
instance, Boakye et al. use an Hidden Markov Model (HMM)
based segmenter to detect overlapped segments and demon-
strate a relative improvement of about 7.4% diarization error
rate (DER) over a baseline [5]. Huijbregts et al. [19] propose a
Gaussian Mixture Model (GMM) based speaker model for the
overlap detection and investigate a “two-pass” system to first
detect overlap, then use it to refine speaker models and make
assignments. In [18], the authors propose a region proposal
network-based speaker diarization (RPNSD) system for which
a DNN simultaneously generates overlapped speech segment
proposals and computes their speaker embeddings. Compared
with standard diarization approaches, RPNSD is argued to
offer shorter pipeline and can handle the overlapped speech.

One of the biggest challenges in speaker diarization is
to determine the total number of speakers for each audio
segment. In current systems, both the number of speakers and
the segment-wise speaker labels are determined by clustering
algorithm, making it a critical and most challenging block
for diarization [29], [8]. Thus, in this paper we propose to
investigate the use of a building block named speaker count
to independently predict the number of active speakers in each
considered audio segment. It will allow clustering algorithm to
assign enough speakers in each audio segment, and therefore
potentially offers better diarization performance. Note that,
there have been studies about counting the number of speakers
in single-channel recording [24], [25] or multichannel setting
[4], [17]. But in these works, speaker count is considered
as a separated task and is not investigated in the context of
speaker diarization. Our contributions are three-fold and are
summarized as follows:

• We consider speaker count as a building block for the
diarization workflow (Section II-B). This block can be
developed independently with other processing blocks,
making it flexible to be integrated into any existing sys-
tems. Recent studies, such as in DIHARD challenge [22],
[23], show that handling overlapped speech, a special case
of speaker count, is crucial and remains an open problem.
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• We provide a preliminary theoretical analysis (Section
III) and investigate the effect of analyzing window size to
draw the potential benefit of the overlap speech detection,
a special case of speaker count, in terms of the diarization
error rate (DER).

• We perform experiments on a benchmark dataset AMI
Headset mix where the oracle speaker count block and
the oracle overlap detection block is integrated into two
state-of-the-art speaker diarization systems (Section IV).
Diarization results confirm the potential benefit gained by
the proposed block. Note that, as a preliminary study we
focus on analyzing potential benefits offered by an ideal
speaker count model and leave its practical development
for future work.

The rest of the paper is organized as follows. We present
the considered speaker diarization workflow with a new re-
segmentation algorithm and two baseline systems in Section
II. We then provide some theoretical analysis to show the
upper benefit obtained by an ideal overlap speech detection
in Section III. Experiment results on two benchmark datasets
are discussed in Section IV. Finally we conclude in Section
V.

II. SPEAKER DIARIZATION APPROACH

A. Speaker count integrated workflow

Speaker diarization pipelines often contain three major
building blocks: voice activity detection (VAD), speaker em-
bedding, and speaker clustering [2]. VAD [16] is used as an
important pre-processing step to eliminate non-voice segments
from the input recording, while speaker embedding aims
to extract discriminative speaker features for each speech
segment. The clustering algorithm is crucial to label speaker
identities in each segment. State-of-the-art approaches [22],
[8] exploit additional blocks such as speaker change detection
[27], overlapped speech detection [5], or even re-segmentation
[10] for a better diarization performance. A general pipeline
is illustrated by the black boxes in Fig. 1.

B. Resegmentation

In the considered approach, the speaker count block is
integrated into diarization workflow to estimate the number
of active speakers at each analysis window. Then, instead
of just labeling one or two speakers with the highest scores
resulted from the clustering block (as in case the conventional
overlapped detection is used), resegmentation block will label
speaker identities according to the exact speaker numbers
reported from the speaker count block. The blue dotted boxes
in Fig. 1 indicate such steps considered in the paper.

C. Baseline systems

In the following, we present Pyannote [8] and UIS-RNN
[29] as two baseline systems where the speaker count can be
integrated as a new building block.

1) Pyannote: The first baseline system we consider is
based on a recently released PyTorch library named Pyan-
note. Pyannote incorporates a set of state-of-the-art trainable
end-to-end neural building blocks that can be either trained
separately or combined and jointly optimized to build speaker
diarization pipelines: end-to-end neural voice activity detection
(VAD) [20], speaker change detection [27], overlapped speech
detection [10], speaker embeddings [6], and Bayesian model-
based clustering [8]. While the first three blocks were all
trained on the AMI datasets [11], the speaker embedding was
trained on the VoxCeleb1 [1] and the VoxCeleb2 [13] datasets.
Instead of relying on x-vectors extracted from a fixed-length
sliding window as input to the clustering step like conventional
speaker diarization systems [9], [21], Pyannote uses metric
learning approach to train speaker embeddings that are directly
optimized for a predefined (usually is cosine) distance. Thus
it reduces the need for techniques like probabilistic linear
discriminant analysis (PLDA) before clustering.

It is worth noting that, while each building block has to
be initially trained separately, Pyannote combines them into
a speaker diarization pipeline whose hyper-parameters are
optimized jointly to minimize diarization error rate. This joint
optimization process has been confirmed leading to better
results than the late combination of multiple building blocks
that were tuned independently from each other [28]. As a
preliminary study, in this paper, we do not consider a joint
optimization of the speaker count block with the others.

2) UIS-RNN: Our second considered baseline exploits the
powerful DNN architectures for both three major steps: VAD,
speaker embedding, [26], and speaker clustering [29]. For
VAD, we use a pre-trained model developed for the Google
WebRTC project1. It is reportedly one of the best available
VAD for real-time processing2. In our implementation, speaker
embeddings are extracted from the state-of-the-art speaker
recognition deep network [26] trained on the VoxCeleb1
[1] and the VoxCeleb2 [13] datasets. This network modifies
ResNet in a fully convolutional way to encode 2D spectro-
grams of audio signals, followed by a NetVLAD/GhostVLAD
layer [3] for feature aggregation along the temporal axis. It
produces a fixed-length 512-dimensional output d-vector for
each input audio segment. The implementation is provided by
the authors3.

Unlike the Pyannote and other conventional unsupervised
clustering approaches, this baseline uses the recently proposed
supervised unbounded interleaved-state recurrent neural net-
works (UIS-RNN) [29] as clustering method. In UIS-RNN
each speaker is modeled by an instance of RNN with shared
parameters. As the total number of speakers in an audio
recording is generally unknown, an unbounded number of
RNN instances can be generated. It is claimed that within a
fully supervised framework, UIS-RNN can better handle com-
plexities in speaker diarization since it automatically learns

1https://webrtc.org/
2https://github.com/wiseman/py-webrtcvad
3https://github.com/WeidiXie/VGG-Speaker-Recognition
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Fig. 1. The general workflow of the speaker diarization system. The blue square-dot boxes indicate the additional steps investigated in the paper.

both the speaker changes and the number of speakers within
each utterance via a Bayesian non-parametric process. In our
experiment, we use the UIS-RNN implementation provided by
the Google AI Blog4. Note that, in this investigated baseline,
DNN architectures for the VAD and the speaker embedding
could be considered to be more advanced than the ones used
in the original UIS-RNN paper [29]. Thus, we argue that this
can be served as a strong baseline for speaker diarization.

III. THEORETICAL ANALYSIS

We analyse the DER obtained by an oracle overlap speech
detection-integrated diarization system and draw its upper
gain compared to a basic setup where only one speaker is
considered to be active at each analysis window. Let I be an
audio file, according to [7], the diarization error rate (DER)
of I is defined by:

DER(I)=

∑
∀s

dur(s){max{Nref (s), Nsys(s)} −Ncor(s)}∑
∀s

dur(s)Nref (s)
,

(1)
where s are all segments with duration dur(s) divided at
every speaker change point; Nref (s), Nsys(s) and Ncor(s)
are the ground-truth, the detected number of speakers, and
the number of the speakers that are correctly determined at
segment s, respectively. Throughout this paper, we denote by
DERn(I) and DERd(I) the numerator and the denominator of
DER(I). Note that only the numerator which contains Nsys(s)
is affected by the the overlap speaker detection or speaker
count block. Thus in the following, we will focus on the
DERn(I) only.

Lemma 1
Suppose I is divided into k arbitrary segments I1, ..., Ik, then:

DERn(I) =

k∑
i=1

DERn(Ii).

We skip the proof because it is trivial.

4https://github.com/ultralytics/yolov5

In the following, we will derive DERn(I) in two cases: with
and without the use of overlap detection. To ease the presen-
tation, we denote by DERw

n (I) and DERo
n(I) the DERn(I) in

these two cases, respectively; Nw
ref , N

o
ref and Nw

cor, N
o
cor the

values of Nref and Ncor with and without the use of overlap
detection, respectively. Moreover, we denote ∆DERn(I) the
gain of the DER’s nominator when using overlap detection,
i.e., ∆DERn(I) = DERo

n(I)− DERw
n (I).

Let wlen be the windows size which is used for both the
diarization and overlap detection models. Suppose I1, ..., Ik
are the segments obtained by dividing I using window with the
size of wlen. To obtain the upper gain by the overlap detection,
let us consider the oracle setting where the overlap detection is
assumed to work perfectly. Specifically, a segment is detected
as overlapped segment if and only if it contains an overlapped
duration. We assume additionally that the confidence score
determined by the diarization model is proportional with the
speaking duration of the speaker, i.e., speaker who is active
more will have a higher confidence score.

Lemma 2
Considering a segment Ii which contains more than one
speaker. Suppose Ii is comprised of O1

i , ..., O
ki
i , where Oj

i is
the duration containing exact j speakers. Moreover, suppose
S1 and S2 are two speakers whose confidence scores are
the highest and the second-highest among all the speakers
appearing in Ii. Let us denote by S1,S2 and S3 be the sets of
duration containing only S1, only S2, and only one speaker
that is neither S1 nor S2; S1,2 be the set of duration contain
both S1 and S2. The following statement concerning the
gain/loss when using overlap detection compared to a basic
setup where only one speaker is assigned at each analysis
window holds:

∆DERn(Ii) = dur(S1,2)− dur(S1)− dur(S3). (2)

Proof
According to our ideal assumption, the prediction results of
the models with and without overlap detection are {S1, S2}

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1151



and {S1}, respectively. According to the Lemma 1, we have

DERn(I) =

ki∑
j=1

DERn(Oj
i )

=
∑

∀s∈O
j
i
dur(s){max{Nref (s),Nsys(s)}−Ncor(s)}.

For every Oj
i , we have Nw

ref (s) = No
ref (s) = j, Nw

sys(s) = 2
and No

sys(s) = 1. The value of Ncor(s) is decided by s and
the used model as follows.
• No

cor(s) = 1 for all Oj
i ∈ S1

⋃
S1,2, and No

cor(s) = 0,
otherwise.

• Nw
cor(s) = 1 for all Oj

i ∈ S1
⋃

S2, Nw
cor(s) = 2 for all

Oj
i ∈ S1,2, and Nw

cor(s) = 0, otherwise.
Therefore,

DERo
n(Ii) =

∑
∀s∈Oj

i&Oj
i /∈S1

⋃
S1,2

dur(s)× j

+
∑

∀s∈Oj
i&Oj

i∈S1,2

dur(s), (3)

DERw
n (I) =

∑
∀s∈Oj

i&Oj
i∈S1

⋃
S2

dur(s)

+
∑

∀s∈Oj
i&Oj

i∈S3

2× dur(s)

+
∑
∀s∈Oj

i

&Oj
i /∈S1

⋃
S2

⋃
S3

⋃
S1,2

dur(s)× j. (4)

Then, the gain when using overlap detection is as follows

∆DERn(Ii) = −
∑
∀s∈Oj

i

&Oj
i∈S1

⋃
S3

dur(s) +
∑
∀s∈Oj

i

&Oj
i∈S1,2

dur(s) (5)

= dur(S1,2)− dur(S1)− dur(S3). (6)

Corollary 1
If Ii does not contain any speaker change point, then:
• ∆DERn(Ii) = 0, if Ii is a non-overlap segment,
• ∆DERn(Ii) = dur(Ii), otherwise.

Proof
If Ii is a non-overlap segment, then DERo

n(Ii) =
DERw

n (Ii) = 0; thus, ∆DERn(Ii) = 0. If Ii is an overlap
segment without of speaker change point, then S1 = S3 = ∅.
According to Lemma 2, ∆DERn(Ii) = dur(S1,2) = dur(Ii).

Theorem 1
For an arbitrary window size wlen > 0, there exists a window
size wlen′ < wlen such that the upper DER gain obtained
when using the overlap detection with the window size of
wlen′ is greater than that when using wlen.
Proof
For each Ii (i = 1, ..., k), let us denote by sji (j = 1, ..., li) all
the segments obtained by dividing Ii at every speaker change
point. We prove the following hypothesis by contradiction:
“we can choose a window size wlen1 such that when we divide
the input audio file I by a window with the size of wlen1, then,

every obtained segment contains at most one speaker change
point”. Let us choose wlen1 as a divisor of wlen (i.e., there
is an integer number n such that wlen = n × wlen1) that
is smaller than min∀i,j dur(sji ) (1). Let S′ denote the set of
all segments obtained by dividing I using a window with the
size of wlen1. Suppose there is an item of S′ containing more
than one speaker change point, that segment must contain at
least one segment among sji (j = 1, ..., li; i = 1, ..., k), say
sj∗i∗ . Then, the length of that segment is greater than dur(sj∗i∗ ).
This contradicts with condition (1). The hypothesis is proved.

Now, let’s use a window with the size of wlen1 to divide I .
For each Ii, let Ai be the set of all segments that do not contain
any speaker change point, and Bi be the set of segments
containing only one speaker change point. From Lemma 1,
we deduce that

∆DERn(Ii) =
∑
∀s∈Ai

∆DERn(s) +
∑
∀s∈Bi

∆DERn(s). (7)

From Corollary 1, we have

∆DERn(Ii) =
∑
∀s∈Ai

& s is overlap

dur(s) +
∑
∀s∈Bi

∆DERn(s)

=
∑
∀s∈Ii

& s is overlap

dur(s)−
∑
∀s∈Bi

& s is overlap

dur(s)

+
∑
∀s∈Bi

∆DERn(s) (8)

According to Lemma 2, we have

∆DERn(s) ≥ −dur(s). (9)

From (8) and (9), we deduce that

∆DERn(Ii) ≥
∑
∀s∈Ii

& s is overlap

dur(s)− 2
∑
∀s∈Bi

dur(s). (10)

Note that as Bi is the set of all segments that consist of exactly
one speaker change point, the cardinality of Bi cannot exceed
the number of speaker change points of Ii. Let ni denote the
number of speaker change points of Ii, then from (9), we have

∆DERn(Ii) ≥
∑
∀s∈Ii

& s is overlap

dur(s)− 2niwlen1. (11)

From (6) and (11), it can be seen that, when wlen1 is smaller
than min

∀i
dur(S1)+dur(S3)

2ni
, the gain obtained by using wlen1 is

greater than that when using wlen.
Theorem 2
Let wlen be the window size, then the following holds

lim
wlen→0

∆DERn(I) =
∑
∀s∈I

& s is overlap

dur(s).

Proof
Let the window size wlen be a sufficiently small number, then
from Lemma 2, we deduce that

∆DERn(Ii) ≤
∑
s∈Ii

& s is overlap

dur(s). (12)
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On the other hand, from Theorem 1, we have

∆DERn(Ii) ≥
∑
s∈Ii

& s is overlap

dur(s)− 2niwlen. (13)

From (12) and (13) the following holds∑
s∈Ii

& s is overlap

dur(s) ≥ ∆DERn(I) ≥
∑
s∈I

& s is overlap

dur(s)

−2wlen

k∑
i=1

ni.

It means that∑
s∈Ii

& s is overlap

dur(s) ≥ lim
wlen→0

∆DERn(I) ≥
∑
s∈I

& s is overlap

dur(s)

− lim
wlen→0

2w

k∑
i=1

ni.

Consequently,

lim
wlen→0

∆DERn(I) =
∑
s∈Ii

& s is overlap

dur(s). (14)

As can be seen from the Theorem 1 and the Theorem 2, the
benefit of the overlap speech detection is greater when (a) the
input audio contains more segments with overlap and (b) the
analyzing window size is smaller. These intuitions still hold
for the use of speaker count, a more general setting, proposed
in this paper as shown in our experiment results in Section
IV. We leave such proof for future work.

IV. EXPERIMENT

A. Data and evaluation metrics

We evaluate the speaker diarization performance on the AMI
Headset mix dataset [12]. This is a widely used dataset for
speaker diarization over the last decade, which consists of 98
hours of meeting recordings from 180 speakers in total. The
meetings were in English and recorded in three rooms with
different acoustic properties. In the dataset 81% of the total
speech in voiced periods is single-speaker and 15% of the
time is two-speaker, leaving approximately 4% of the time
to three or more speakers. This implies that the two-speaker
situation accounts for about 75% of the overlap regions. The
dataset was split into 70% for training (68.6 hours), 15% for
validation (14.7 hours), and 15% for evaluation (14.7 hours).

We use the pyannote.metrics toolkit [7] to evaluate the
speaker diarization performance. Three widely-used metrics
are computed: diarization error rate (DER), Jaccard error rate
(JER), and B3-F1 score. DER is defined in equation (1). JER
is a similarity measure typically used to evaluate the output
of segmentation systems and is defined as the ratio between
the intersection and union of two segmentations. For DER
and JER the lower value the better, while for B3-F1 score the
higher the better.

B. Implementation details

Pyannote baseline: we use configuration files, implementa-
tion codes, and pre-trained models for all processing blocks
as they were already trained and validated on the AMI
datasetby the authors5. Speaker embeddings of dimension 512
are extracted every 1-second sliding window for clusteringWe
then evaluate Pyannote baseline performance on the test set of
the dataset.

UIS-RNN baseline: For training the d-vectors speaker em-
bedding, the VoxCeleb1 [1] and the VoxCeleb2 [13] datasets
are further augmented with approximately 1,000 hours of
English speeches from ST Chinese Mandarin Corpus6, and
approximately 34 hours of Japanese speeches collected from
Youtube. We set a varying size spectrogram corresponding
to 2-6 second temporal segment, extracted randomly from
each utterance. Spectrograms are computed via the short-term
Fourier transform (STFT) with 256 frequency bins, a sliding
Hamming window of size 25 ms, and a window shift of 10 ms.
The spectrograms are then normalized by subtracting the
mean and dividing by the standard deviation of all frequency
components in a single time step. For training the UIS-
RNN clustering on the AMI headset mix dataset, we use the
parameter settings in the original implementation, except the
sliding window for speaker embedding extraction is 1 second
instead of 240 ms. Similar to the Pyannote baseline setting,
during the evaluation, speaker embeddings of dimension 512
are extracted every 1-second sliding window for clustering.

TABLE I
SPEAKER DIARIZATION RESULTS OBTAINED BY THE PYANNOTE-BASED

METHODS ON THE AMI HEADSET MIX DATASET. THE ORIGINAL MODEL IS
TRAINED AND PROVIDED BY THE AUTHORS.

Pyannote-based
methods

Window
size (seconds) DER% JER% B3-F1

Original model 1 32,09 99.15 0.59
One speaker assignment 1 29.36 59.36 0.63

1 34.28 59.68 0.56
0.8 32.46 58.09 0.57
0.6 30.12 57.58 0.58
0.4 28.85 57.64 0.6
0.2 27.83 56.18 0.63

Oracle overlap
detection

Oracle speaker
change 25.6 55.98 0.64

1 29.13 58.44 0.61
0.8 26.24 55.98 0.64
0.6 25.33 54.82 0.65
0.4 23.75 53.91 0.65
0.2 21.87 52.37 0.65

Oracle speaker
count

Oracle speaker
change 20.62 51.05 0.65

C. Diarization results

In order to evaluate the potential benefit of the speaker count
integration, for each considered baseline, we investigate four
system setups as follows:

5https://github.com/pyannote/pyannote-audio
6http://openslr.org/38
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TABLE II
SPEAKER DIARIZATION RESULTS OBTAINED BY THE UIS-RNN-BASED
METHODS ON AMI HEADSET MIX DATASET. THE ORIGINAL UIS-RNN

MODEL IMPLEMENTATION IS PROVIDED BY THE GOOGLE AI BLOG, BUT
TRAINED BY OURSELVES.

UIS-RNN-based
methods

Window
size (seconds) DER% JER% B3-F1

Original model 1 30.87 59.06 0.61
One speaker assignment 1 28.52 64.91 0.59

1 30.96 58.69 0.56
0.8 30.7 58.09 0.57
0.6 28.7 57.33 0.58
0.4 27.64 56.92 0.6
0.2 26.18 55.74 0.63

Oracle overlap
detection

Oracle speaker
change 24.7 54.8 0.64

1 28.41 55.44 0.65
0.8 27.32 53.48 0.67
0.6 24.27 51.78 0.67
0.4 22.6 50.36 0.67
0.2 21.03 49.12 0.67

Oracle speaker
count

Oracle speaker
change 18.74 46.32 0.7

• Original model: This is the baseline diarization workflow
where speaker embeddings and speaker clustering are
performed for every 1 s audio segment along with each
input audio file. For Pyannote, all processing blocks use
the pre-trained model provided by the authors. For UIS-
RNN, only VAD uses a pre-trained model while speaker
embedding and clustering models are trained by ourselves
as detailed in Section IV-B.

• One speaker assignment: In this setup, all blocks are
similar to the original model, except that the clustering
algorithm assigns only one speaker with the highest
appearance probability for each 1 s audio segment. This
simple clustering setting does not require thresholding
to specify active speakers in each audio segment and
shows us the diarization result without the use of overlap
detection and speaker count blocks.

• Oracle overlap detection: In this setup, again all blocks
are similar to the original model, except for the use of
the oracle overlap detection instead of the trained DNN
model. Here we assume that the overlap detection for
each analyzing audio window is perfect (i.e., known from
the ground-truth) in order to evaluate the upper-bound
diarization performance with the use of overlap detection
block with different analyzing window sizes. We vary the
window size as 0.2s, 0.4s, 0.6s, 0.8s, 1s to investigate its
effect. In windows with more than two active speakers,
we choose the two ones with the longest active duration.
The best diarization performance is obtained when oracle
speaker change is used where the speaker activity (i.e.,
active or inactive) boundary is perfectly specified.

• Oracle speaker count: This setup allows us to investigate
the potential benefit of the speaker count block when it
is integrated into current baseline systems. Similarly to
the oracle overlap detection case, we vary the speaker
count window size as 0.2s, 0.4s, 0.6s, 0.8s, 1s to analyze

its effect, and the best performance is obtained with the
use of the oracle speaker change. In each window, the
number of active speakers, which can be more than two,
is perfectly specified given the ground-truth.

Speaker diarization results obtained by the different variants
of the Pyannote baseline and the UIS-RNN baseline are sum-
marized in Table I and Table II, respectively. First, it is interest-
ing to see that the simple one speaker assignment setting offers
better DER, the most important evaluation metric, than the
two original baseline models on the AMI Headset mix dataset
which contains about 19% of multiple speaker cases. This
shows that clustering is still very challenging for overlapping
speeches, and reveals the need for the speaker count building
block. It is also not surprising that the average result is better
when the overlap detection is used, especially with a small
window size. Finally, as expected, the proposed approach
integrating speaker count block offers the best diarization
performance (in terms of DER and B3-F1 score) in both two
baselines.

It is worth noting that, in this oracle overlap detection and
the oracle speaker count settings, the general diarization results
are not better than those obtained by the original models or
the one speaker assignment setting in both two baselines when
the window size is 1 second. This is due to the fact that
in many analyzing windows, the actual speech overlapping
duration is less than 1 second. Thus, assigning two speakers
(for the overlap detection case) and multiple speakers (for the
speaker count case) for all such long windows is less accurate.
With this intuition, the smaller window size allows speaker
assignment to be closer to the ground-truth, and therefore
the better diarization performance is observed as shown in
Table I and Table II. The best performance is obtained by
the speaker count integrated approach with the oracle speaker
change decision: DER is as low as 20.62% for the Pyannote
and 18.74% for the UIS-RNN.

V. CONCLUSION

In this paper, we address the problem of efficiently handling
overlapping speech in speaker diarization systems. For such
purpose, we first introduce a building block, which can be
easily integrated into existing diarization workflows, to inde-
pendently count the number of active speakers in each audio
window in order to better label speakers. We then discuss the
upper gain offered by an ideal overlap speech detection, a
special and simpler case of the speaker count, via a theoretical
analysis. Finally, we perform experiments where the speaker
count block is integrated into two strong diarization baselines
to confirm its potential benefit in a real-world dataset, and to
further investigate the effect of the window size. Future work
would be devoted to develop and train a DNN-based speaker
count model, e.g., motivated from the Countnet [25] or the
CRNN approach [17], for a practical diarization application.
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