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Abstract—Acoustic scene classification (ASC) and sound event
detection (SED) are principal tasks in environmental sound
analysis. On the basis of the idea that acoustic scenes and
sound events are closely relevant to each other, some groups
previously proposed joint analysis of acoustic scenes and sound
events utilizing multitask learning (MTL)-based neural network
models. The MTL-based model shares information on acoustic
scenes and sound events in mutual estimation. However, in
the conventional methods, ASC and SED performances depend
strongly on the learning weights of each ASC and SED task, and
finding the appropriate balance between the learning weights
of ASC and SED tasks is difficult. To address this problem,
we therefore propose a dynamic weight adaptation method for
multitask learning of ASC and SED based on multi–focal loss in
this paper. Experimental results obtained using parts of the TUT
Acoustic Scenes 2016/2017 and TUT Sound Events 2016/2017
show that the proposed method improves the scene classification
and event detection performance by 3.52 and 3.27 percentage
points in micro-Fscore compared with the conventional MTL-
based method, respectively. Moreover, the experimental results
also indicate that adapting the learning weights dynamically in
accordance with the progress of model training improves the
ASC and SED performances.

I. INTRODUCTION

Environmental sound analysis has attracted increasing re-
search interest in recent years, and it has significant potential
in the development of various applications such as machine
condition monitoring, automatic surveillance, media retrieval,
and biomonitoring systems [1], [2], [3], [4]. Acoustic scene
classification (ASC) and sound event detection (SED) are the
primary tasks in environmental sound analysis. ASC is a task
that predicts a predefined acoustic scene label in an audio
recording, where the acoustic scene indicates the surroundings
in which the audio is recorded, such as “office,” “residential
area,” “train,” and “indoor.” SED involves detecting sound
event labels and their time boundaries in the audio record-
ing, where a sound event represents a sound class, such as
“keyboard typing,” “car,” “cutlery,” and “people talking.”

For ASC and SED, neural-network-based methods, such
as the convolutional neural network (CNN), convolutional
recurrent neural network (CRNN), and Transformer, have
been widely applied in recent works. For example, Valenti
et al. have proposed a method for ASC based on CNN [5].
Liping et al. [6], Tanabe et al. [7], and Raveh et al. [8]
have respectively proposed Xception, VGG, and ResNet-based
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scene classification methods, which have been widely used
in image recognition. Hershey et al. have proposed an event
detection method using CNN [9]. Çakır et al. have proposed
a SED method utilizing CRNN, which can capture temporal
information of sound events [10]. More recently, Kong et al.
[11] and Miyazaki et al. [12] have proposed Transformer-based
and Conformer-based methods for SED, respectively.

Most conventional methods of environmental sound analysis
address acoustic scene and sound event analysis separately;
meanwhile, acoustic scenes and sound events are related to
each other. For example, in the acoustic scene “home,” the
sound events “dishes” and “glass jingling” are likely to occur,
whereas the sound events “car” and “bird singing” occur
infrequently. Therefore, when we recognize the sound events
“dishes” and “glass jingling,” information on the acoustic
scene “home” helps identify these sound events, and vice
versa. On the basis of this fact, Mesaros et al. [13] and Heittola
et al. [14] have proposed methods for SED taking information
on acoustic scenes into account in an unsupervised manner.
Imoto and Shimauchi [15] and Imoto and Ono[16] have pro-
posed scene classification methods considering sound events
using Bayesian generative models. Bear et al. [17] and Tonami
et al. [18], [19] have proposed methods for the joint analysis of
acoustic scenes and sound events utilizing MTL-based neural
network models of ASC and SED. These methods train the
MTL model of ASC and SED using a linear combination
of ASC and SED losses with constant weights. However, the
conventional works reported that scene classification and event
detection performances depend on the constant weights of
ASC and SED losses, and discovering appropriate weights of
ASC and SED losses is difficult. Moreover, it may be preferred
to change the learning weights dynamically in accordance with
the progress of model training. In this work, we thus propose
a dynamic weight adaptation method for multitask learning of
ASC and SED based on multi–focal loss.

The remainder of this paper is structured as follows. In
section 2, we introduce the conventional methods for ASC,
SED, and joint analysis of ASC and SED using multitask
learning. In section 3, we propose a dynamic adaptive method
of loss weighting factors in multitask learning. In section 4, we
discuss an experiment carried out to evaluate the performance
of the proposed method. Finally, we conclude this work in
section 5.
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TABLE I
SOUND EVENTS OCCURRING IN EACH ACOUSTIC SCENE IN TUT ACOUSTIC SCENES 2016, 2017, TUT SOUND EVENTS 2016, AND 2017 [24], [25]
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II. CONVENTIONAL METHODS

A. Conventional Methods for ASC and SED

For conventional methods of ASC and SED, many neural-
network-based methods based on CNN [5], [9], CRNN [10],
and Transformer [11], have been proposed. In this section,
we overview the conventional scene classification and event
detection methods based on neural networks. In many con-
ventional methods for ASC and SED, the time–frequency
representation of the observed acoustic signal X ∈ RD×T ,
such as the time series of mel frequency cepstrum coefficients
(MFCCs) or the log mel-band spectrogram, is used as the
acoustic feature. Here, D and T are the number of frequency
bins and the number of time frames of the input acoustic
feature, respectively. This time–frequency representation is fed
to the ASC or SED network. In ASC, which estimates the pre-
defined acoustic scene label with which a sound clip is most
associated, the model parameters are optimized utilizing the
output of the network and the following cross-entropy (CE)
loss function Lscene:

Lscene(θ) = −
N∑

n=1

{
zn log(yn)

}
, (1)

where N , yn, and zn are the number of acoustic scene
classes, the output of the network, and the target scene label,
respectively. The target label is 1 if the sound clip is most
associated with acoustic scene n and 0 otherwise.

On the other hand, in SED, which detects the sound event
labels and their start and end times, the model parameters are
optimized using the output of the network and the following
binary cross-entropy (BCE) loss function Levent:

Levent(θ) = −
T∑

t=1

{
zt log(yt)+(1−zt) log(1−yt)

}
= −

T,M∑
t,m=1

{
zt,m log(yt,m)+(1−zt,m) log(1−yt,m)

}
,

(2)

where T , M , yt,m, and zt,m are the number of time frames,
the number of sound event classes, the prediction of sound
event m in time frame n, and the target label, respectively.
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Fig. 1. Network structure of conventional MTL-based method [18]

B. Joint Analysis of Acoustic Scenes and Sound Events Using
Multitask Learning

In most conventional methods, ASC and SED are studied
separately. However, as shown in Table I, many acoustic scenes
and sound events are closely related to each other; thus,
information on acoustic scenes will help in detecting sound
events, and vice versa. On the basis of this idea, environmental
sound analysis based on multitask learning of ASC and SED
has been proposed [17], [18], [19], [20]. In these methods,
parts of the ASC and SED networks share the holding of
information on acoustic scenes and sound events in common,
as shown in Fig. 1.

In the conventional methods, the part of the network is
shared to hold information of acoustic scenes and sound events
in the shared layers. The CNN and bidirectional gated recur-
rent unit (BiGRU) layers are applied for scene classification
network and event detection network, respectively. To train the
multitask model of ASC and SED, the conventional method
[18] utilizes the following loss function:

L(θ) = αLscene(θ) + βLevent(θ), (3)
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where α and β are the constant weights of scene and event
losses. In this work, β = 1.0 can be set without loss of
generality.

III. PROPOSED METHOD

A. Motivation

The results of using conventional methods revealed that
ASC and SED based on the multitask learning framework in-
deed improve the performances of classifying acoustic scenes
and detecting sound events compared with the single task-
based methods [18], [19]. However, ASC and SED perfor-
mances depend on the weights α and β, and finding the
appropriate balance between ASC and SED tasks is not easy.
Moreover, in the conventional methods, the learning weights
α and β are constant throughout model training. However, it
may be preferable to change the learning weights dynamically
in accordance with the progress of model training. To address
this limitation of conventional methods, we thus propose a
dynamic weight adaptation method for multitask learning of
ASC and SED.

B. Dynamic Weight Adaptation of Multitask Learning Based
on Multi–focal Loss

In the proposed method, we introduce focal loss [21],
[22], [23] to dynamically adapt the weights of multitask
learning of ASC and SED. Focal loss was originally proposed
to dynamically adjust the training weight of the model in
accordance with the difficulty/ease of training as follows:

L(θ) = −
N∑

n=1

{
(1− yn)

ηzn log(yn)
}
, (4)

where η is the constant focusing parameter. Focal loss down-
weights the training weight depending on the prediction error.
To adopt this idea into the dynamic weight adaptation of
multitask learning, we replace Lscene(θ) and Levent(θ) in
Eq. (3) with the following multiple focal loss functions,
respectively:

Lscene(θ) = −
N∑

n=1

{
(1− yn)

ηzn log(yn)
}
, (5)

Levent(θ) = −
T,M∑
t,m=1

{
(1− yt,m)γ zt,m log(yt,m)

+ yζt,m(1− zt,m) log(1− yt,m)
}
, (6)

where γ and ζ are the constant focusing parameters. The
proposed multi–focal loss function dynamically down-weights
the training weights of ASC and SED and can determine the
appropriate balance of the training weight between ASC and
SED tasks automatically.

TABLE II
DETAILED STRUCTURE OF MTL NETWORK OF ASC AND SED

Shared network
Log-mel energy

500 frames × 64 mel bin
3×3 kernel size / 128 ch.
Batch norm., Leaky ReLU

1×8 Max pooling 3×3 kernel size / 128 ch.
Batch norm., Leaky ReLU

1×2 Max pooling

 × 2

Scene layers Event layers
3×3 kernel size / 256 ch.
Batch norm., Leaky ReLU BiGRU w/ 32 units

25×1 Max pooling
3×3 kernel size / 256 ch.
Batch norm., Leaky ReLU FC w/ 32 units, Leaky ReLU

Global max pooling
FC w/ 32 units, Leaky ReLU FC w/ 25 units, sigmoid

FC w/ 4 units, Softmax

TABLE III
EXPERIMENTAL CONDITIONS

Acoustic feature Log-mel energy (64 dim.)
Frame length / shift 40 ms / 20 ms
Length of sound clip 10 s
Optimizer RAdam [27]
Detection threshold of sound events 0.5

IV. EVALUATION EXPERIMENTS

A. Experimental Conditions

We evaluated the performance of the proposed dynamic
weight adaptation of multitask learning. For the evaluation
experiments, we built a dataset composed of parts of the TUT
Acoustic Scenes 2016 and 2017 and TUT Sound Events 2016
and 2017 [24], [25]. From the TUT datasets, we selected sound
clips including four acoustic scenes, “city center,” “home,”
“office,” and “residential area,” for a total of 266 min of
sounds (development set, 192 min; evaluation set, 74 min).
These sound clips include the 25 types of sound events listed
in Table I. The details of the dataset are found in [26].

As an acoustic feature, we applied the 64-dimensional log
mel-band energy, which was calculated every 40 ms with a
20 ms hop size. The acoustic feature was fed into the MTL
network proposed in [18]. The constant focusing parameters
are set to γ = 1.0, ζ = 0.0625, and η = 0.5 referring to
[23]. For each method, we conducted the evaluation 10 times
with random initial values of model parameters. The detailed
network structure and other experimental conditions are listed
in Tables II and III.

B. Experimental Results

1) Overall Performances of ASC and SED: Table IV shows
the average experimental results for the conventional methods
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TABLE IV
PERFORMANCES OF SCENE CLASSIFICATION AND EVENT DETECTION

Scene classification Event detection
Method

Micro-Fscore Macro-Fscore Micro-Fscore Macro-Fscore
CNN (ASC) 49.68% 45.67% - -
CNN-BiGRU (SED) - - 40.10% 7.39%
Conventional MTL (α=0.001, β=1.0) 52.55% 43.41% 41.02% 6.83%
Proposed method (α=0.001, β=1.0, γ=1.0, ζ=0.0625, η=0.5) 55.07% 47.85% 44.29% 8.86%
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Fig. 2. Scene classification and event detection performance with various
learning wights α

and the proposed method. For CNN and CNN-BiGRU, we
applied the same network structures with shared + scene layers
and shared + event layers, respectively. The results show that
the proposed dynamic weight adaptation method achieves a
reasonable performance in both ASC and SED tasks compared
with the conventional MTL-based method. When α = 0.001,
β = 1.0, γ = 1.0, ζ = 0.0625, and η = 1.0, micro-Fscores
for scene classification and event detection with the proposed
method are improved by 3.52 and 3.27 percentage points
compared with those of the conventional MTL-based method.

To investigate how the proposed method determines the
appropriate weights of ASC and SED, we evaluate the ASC
and SED performances with various α values. Fig. 2 shows the
scene classification and event detection performance with var-
ious learning weights α. The result indicates that the proposed
method achieves a reasonable performance regardless of the
weight α; thus, the proposed method enables us to apply the
MTL-based method without considering the learning weights.
Moreover, the result also indicates that adapting the learning
weights dynamically in accordance with the progress of model
training improves the ASC and SED performances.

2) Detailed Detection Results for Each Sound Event: To
investigate the event detection performance in detail, we list
the F-scores for selected sound events in Table V. The results
show that the proposed method improves Fscores for many
sound events. For instance, the proposed method detects the
sound events “bird singing,” “car,” and “washing dishes” more

TABLE V
AVERAGE FSCORES FOR SELECTED SOUND EVENTS

bird people washing water tapMethod singing car walking dishes running
CNN-BiGRU 17.79% 43.85% 0.00% 0.41% 43.23%
Conventional MTL 23.72% 45.10% 0.00% 0.24% 6.55%
Proposed method 32.73% 45.45% 0.00% 1.28% 36.41%

accurately than the conventional MTL-based method. From
Table I, these sound events are closely related to particular
scenes, e.g., sound event “bird singing” only occurs in the
acoustic scene “residential area.” This indicates that when
detecting sound events, the proposed method can take in-
formation on acoustic scenes into account more effectively
than the conventional method. Meanwhile, the event detection
performance for “people walking” is not improved. This
is because the sound event “people walking” occurs in all
acoustic scenes; thus, information on acoustic scenes may not
help this sound event detection.

V. CONCLUSIONS

In this paper, we proposed the dynamic weight adaptation
method for multitask learning of ASC and SED. In the
proposed method, we applied focal loss objective functions to
each ASC and SED loss to dynamically adapt the learning
weights of ASC and SED losses. Moreover, the proposed
multi–focal loss can adapt the learning weights dynamically
in accordance with the progress of model training. The ex-
perimental results obtained using parts of the TUT Acoustic
Scenes 2016 and 2017 and TUT Sound Events 2016 and
2017 datasets indicate that the proposed multi–focal loss-
based method outperforms the conventional MTL method by
3.52 and 3.27 percentage points of the micro-Fscore in scene
classification and event detection tasks, respectively. Moreover,
the experimental results also indicate that adapting the learning
weights dynamically in accordance with the progress of model
training improves the ASC and SED performances.
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