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Abstract—We investigate the characteristics of spatial and
frequency-based features as an aspect of asynchronous acoustic-
scene analysis. Recently, many tasks related to acoustic scene
classification (ASC) have attracted a lot of interest. One of the
most famous events, the challenges and workshops on detection
and classification of acoustic scenes and events (DCASE) series,
started in 2013. Here, we focus on DCASE 2018 Task 5, a multi-
channel dataset, from among the many tasks of the challenges.
This dataset consists of audio data acquired by multiple mi-
crophone arrays at different positions. It should provide rich
spatial information on acoustic scenes. However, little research
has exploited spatial features for the task. We focus on the spatial
cepstrum, a robust spatial feature. First, we analyze DCASE
2018 Task 5 with cross-correlation to estimate synchronous
and asynchronous data. Then, a convolutional neural network-
based ASC model using the spatial cepstrum is used to evaluate
performances under synchronous or asynchronous datasets. In
our experiments, a system with spatial cepstrum and frequency-
based features was evaluated under multi-channel datasets, and
the results show that it achieved the highest F-score.

I. INTRODUCTION

Recently, many tasks related to acoustic scene classification
(ASC) have attracted a lot of interest. ASC contains many
subtasks such as tagging [1], [2], localization [3], monitor-
ing of domestic activities [4], [5], and anomalous detec-
tion [6], [7]. International challenges and workshops related to
these subtasks started in 2013 and are called the challenges and
workshops on detection and classification of acoustic scenes
and events (DCASE). Recently, DCASE has become one of
the most famous events involving ASC.

So far, many kinds of convolutional neural network (CNN)-
based ASC methods with spectrogram features have been pro-
posed [8], [9], and the baseline systems of DCASE also adopt
CNN-based ASC systems [10], [11]. One of the important
points of these systems is the selection of input features for
the architectures. So far, frequency-based features, such as
log-mel spectrograms [12], [13] and mel-frequency cepstral
coefficients (MFCCs) [14], [15], and raw waveforms [16], [17]
have been used as input features.

In this paper, we focus on DCASE 2018 Task 5 since the
dataset of this task provides multi-channel audio segments ac-
quired by multiple microphone arrays at different positions for
monitoring domestic activities [18]. From the multi-channel
audio dataset, not only frequency-based features but also
spatial features can be extracted. Even though Task 5 initially
focused on systems that can exploit spatial cues independent of
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Fig. 1. Block diagram of acoustic scene classification

sensor location using multi-channel audio, most of the systems
proposed for DCASE 2018 Task 5 used only frequency-based
features [19], [20]. One of the reasons is that the provided
dataset contained asynchronous multi-channel data, which
directly affected the performance of spatial features. However,
there has been no discussion on the effects of asynchronous
multi-channel data on spatial-based features.

First, this paper analyzes the DCASE 2018 Task 5 dataset
from the perspective of synchronous and asynchronous multi-
channel data. For the analysis, we investigate the performances
of CNN-based systems with spatial or frequency-based fea-
tures. As a spatial feature, the spatial cepstrum is used since
it was proposed for using spatial information obtained from a
distributed microphone array [21]. In addition, as a frequency-
based feature, the log-mel spectrogram is used. From our
investigation, it was confirmed that almost half of the DCASE
2018 Task 5 dataset contained asynchronous multi-channel
data, and the performance when using the spatial cepstrum
was degraded by the asynchronous data. After arranging the
dataset to contain synchronous data only, the experimental
results show that synchronous data only improved the perfor-
mance of a system using the spatial cepstrum. Additionally,
since a system combining spatial and frequency-based features
achieved the highest F1-score, it is indicated that these features
compensated for each other and improved the performance.

The rest of the paper is organized as follows. In Section II,
the ASC task is introduced. Then, the spatial cepstrum is
introduced in Section III. In Section IV, we analyze the
asynchronous multi-channel dataset and show the experimental
results. Finally, our conclusion is given in Section VI.
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II. ACOUSTIC SCENE CLASSIFICATION WITH
MULTI-CHANNEL AUDIO

Acoustic scene classification (ASC) is a task that classifies
sounds into predefined categories such as “cooking,” “vacu-
uming,” and “watching TV” or situations such as “being on
the bus,” “being in a park,” and “meeting” [22]. Figure 1
illustrates a block diagram of ASC. There are two important
modules. One is feature extraction, and the other is a classifier
of acoustic scenes. So far, many features such as MFCCs
or log-mel frequency spectrograms have been used for ASC.
These features are categorized into two types: those extracted
from single-channel or from multi-channel audio. In the single-
channel case, frequency-based features are generally extracted,
whereas in the multi-channel case, not only frequency infor-
mation but also rich spatial information can be extracted. To
use spatial information effectively, spatial information-based
features are used for acoustic scene classification [21], [23].

III. SPATIAL FEATURES FOR ACOUSTIC SCENE
CLASSIFICATION

To make use of spatial cues that can be extracted from multi-
channel audio for ASC, Tanabe et al. applied the preprocessing
methods of blind dereverberation and blind source separa-
tion for scene analysis [24]. However, these methods require
synchronized multi-channel observations. To extract spatial
information from asynchronous multi-channel observations,
Imoto and Ono proposed the spatial cepstrum [21]. The
spatial cepstrum can extract spatial information from multi-
channel audio. The positions of microphones are not required
to calculate the spatial cepstrum, enabling convenient spatial
feature extraction using a distributed microphone array. To
calculate the spatial cepstrum, a channel-based log-amplitude
vector is used:

qτ =



log ãτ,1
log ãτ,2

...
log ãτ,n

...
log ãτ,N


, (1)

where τ , n, and N are the time frame, channel index, and
number of microphones, and

ãτ,n =

√
1

Ω

∑
w

a2w,τ,n (2)

is the multi-channel power observation at each time frame.
aw,τ,n and w represent the amplitude information in a short
time Fourier transform (STFT) representation and the fre-
quency index. Then, principal component analysis (PCA) is
applied for basis transformation. To apply PCA, the covariance
matrix Rq is calculated by
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Fig. 2. Box plot of coefficients of cross-correlation of DCASE 2018 Task 5
evaluation fold

Rq =
1

T

∑
τ

qτq
T
τ , (3)

where T is the number of time frames, and T represents
the vector transpose. Because Rq is a symmetric matrix, the
eigendecomposition of Rq can be expressed as

Rq = EDET, (4)

where E and D are the eigenvector matrix and the diagonal
matrix. The spatial cepstrum is defined using E as

dτ = ETqτ . (5)

IV. EXPERIMENTS

A. Analysis of DCASE2018 Task 5 dataset

The DCASE 2018 Task 5 dataset was released for monitor-
ing domestic activities. The dataset consists of multi-channel
audio segments acquired by multiple microphone arrays at
different positions. From the official description of the dataset,
“there is not a full time-wise overlap by all sensor nodes for
a particular consecutive activity of those classes” [25]. This
means the dataset contains some asynchronous data.

First, we assumed that the synchronous data had a high
cross-correlation between two nodes, and we calculated the
cross-correlation of the spectrograms between two nodes per
each label. The procedure was as follows. In step 1, direct
current components were removed from all files. In step 2,
STFT was performed to extract spectrograms. In step 3, L2
normalization was applied. In step 4, a cross-correlation of the
spectrograms between two nodes was calculated while shifting
spectrograms along the time axis. In step 5, the maximum
coefficient of the cross-correlation was set to the value for
dataset analysis. Since there were four nodes, a round-robin
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Fig. 3. Number of samples of K-means clustering results for each label in
DCASE 2018 Task 5 evaluation fold

TABLE I
PERCENTAGE OF MANUAL ANNOTATION FOR EACH LABEL [%]

Label Synchronous Asynchronous
Absence 70 30
Cooking 100 0

Dishwashing 100 0
Eating 100 0
Other 100 0

Social activity 100 0
Vacuum cleaner 100 0

Watching TV 4 96
Working 2 98

check was carried out. Figure 2 shows a box plot of the
coefficients of the cross-correlation of the DCASE 2018 Task
5 development-dataset evaluation fold. Most of the values for
“watching TV” and “working” were lower than those of the
other labels. This indicates that most of the asynchronous data
was labeled as “watching TV” or “working.” To estimate the
synchronous or asynchronous data automatically, the K-means
clustering method was applied to the coefficient distribution. A
class that had higher coefficients was regarded as synchronous,
and the other was regarded as asynchronous. Figure 3 show the
K-means clustering results for each label. The majority of the
asynchronous data belonged to “watching TV” or “working.”
Of the samples of the evaluation fold, 42% were classified as
synchronous. Additionally, manual annotation was performed
to verify this result. From each label, 50 samples were
randomly selected and annotated by a single male annotator.
Table I shows the manual annotation results. All data labeled
“watching TV” or “working” were removed from the DCASE
2018 Task 5 dataset, and few pieces of “absence” data that was
estimated to be asynchronous data by K-means clustering were
also removed. The dataset with asynchronous data removed is
referred to as “DCASE sync. only” data in this paper. The
amounts of data selected for training, validation, and testing
were 5,338, 1,325, 2,167 samples, respectively. Each amount
was almost 50% reduced from the original DCASE 2018 Task
5 dataset.
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Fig. 4. 2D floorplan of combined kitchen and living room [26] with selected
microphone numbers

TABLE II
ACOUSTIC SCENE CLASSIFICATION F-SCORE OF SPATIAL CEPSTRUM FOR

DIFFERENT DATASETS

Layer Output size
Input 1 × 497 × 16

Conv (1 × 7, 64) + BN + ReLU + Dropout (0.2) 1 × 497 × 64
Conv (1 × 10, 128) + BN + ReLU + Dropout (0.2) 1 × 488 × 128
Conv (1 × 13, 256) + BN + ReLU + Dropout (0.2) 1 × 476 × 256

Global max pooling + Dropout (0.2) 256
Dense 128

Softmax output 9

B. Dataset

The DCASE 2018 Task 5 development dataset was used
for our experiments. For training and validation, a training
fold of the dataset was used and split into 8:2. For testing,
an evaluation fold of the dataset was used. Additionally, the
SINS dataset [18], [27] was used. It contained a continuous
recording of one person living in a vacation home over a period
of one week. For simplification, only nodes 2, 4, 6, and 8
were used for the experiments as shown in Figure 4. To bring
labels in line with the DCASE dataset, the labels “visit” and
“calling” were merged into “social activity.” To set the same
data size as the DCASE dataset, 11,672, 2,914, and 3,654
samples were selected for the training, validation, and testing
data. In all datasets, each sample had four nodes, and each
node had four-channel audio. Both datasets were sampled at
16 kHz.

C. Acoustic features

In our experiments, the spatial cepstrum and the log-mel
spectrogram were used as a spatial feature and a frequency
one, respectively. We followed the original procedure of the
spatial cepstrum [21]. For log-mel spectrograms, two feature
representations were prepared. The first one was a simple log-
mel spectrogram that was extracted from single-channel audio,
which was separated from 16-channel audio. The other one
was a 16-channel combined log-mel spectrogram that was
created by extracting 16 channels of audio and combining
them in the channel dimension. The 16-channel combined log-
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Fig. 5. Confusion matrix of classification accuracy [%] with DCASE sync. only dataset

mel spectrogram included frequency and spatial information
simultaneously. Direct current components were removed from
all audio waves before extracting acoustic features.

D. Experimental conditions

The duration of each file in the DCASE 2018 Task 5 dataset
was ten seconds. Since the duration of each file in the SINS
dataset was longer than ten seconds, each file was cut into
ten seconds. For STFT, the frame length and frame shift were
set to 1024 and 320, respectively. The number of bins for the
log-mel spectrogram was 40. We prepared four systems for
comparison as follows.

(A) Spatial cepstrum:
Spatial cepstrum extracted from 16-channel audio
data.

(B) Log-mel spectrogram (1ch):
Log-mel spectrograms (1ch) extracted from single-
channel audio data.

(C) Log-mel spectrogram (16ch):
Log-mel spectrograms (16ch) created by 16-channel
audio data and combining each channel into the
channel dimension.

(D) Score fusion:
The system with the spatial cepstrum and the system
with log-mel spectrogram (16ch) were trained; then,
the softmax outputs were averaged to predict a label.

To construct the system with the spatial cepstrum (A), a
CNN-based classification network was used. The network for
(A) consisted of convolution, batch normalization (BN) [28],
ReLU activation, dropout, global max pooling, and dense
and softmax layers. The modified network architecture and
parameters are shown in Table II. For the network architectures
of (B) and (C), the CNN-based classification network [29]
proposed for the DCASE 2018 Task 5 Challenge was used.
The training conditions for all systems were 500 epochs
using the Adam optimizer [30], where the parameters of the
optimizer were set at a learning rate of 0.0001, β1 = 0.9, and

TABLE III
ACOUSTIC SCENE CLASSIFICATION F-SCORE OF COMPARISON SYSTEMS IN

DIFFERENT DATASETS

System DCASE SINS(Sync. only)
(A) Spatial cepstrum 86.8% 79.0%
(B) Log-mel spectrogram (1ch) 86.4% 79.8%
(C) Log-mel spectrogram (16ch) 95.7% 88.9%
(D) Score fusion 96.4% 89.6%

β2 = 0.999. The macro F1-score was used as an evaluation
metric for ASC and was defined as follows,

Macro F-score = 2 ∗ (precision ∗ recall)

(precision + recall)
. (6)

Additionally, we compared the ASC performances of the
spatial cepstrum (A) in simulated asynchronous cases. To
simulate the asynchronous data, we prepared three cases:

• All: Asynchronous data in all nodes.
• Two: Asynchronous data in two nodes. The other two

nodes had synchronous data.
• One: Asynchronous data in one node. The other two

nodes had synchronous data.
We assumed the asynchronous data had 10 sec delay. For
example, in the “All” case, the time of one node had 30 sec
delay from one node. There was no overlapped segments in
asynchronous node.

E. Experimental results

Table III shows the classification results of different fea-
tures under the synchronous datasets. Comparing (B) [log-
mel spectrogram (1ch)] with (A) [spatial cepstrum], (B)
obtained a higher score on both datasets. This indicates
that the frequency-based feature more easily captured the
characteristics for ASC than the spatial-based feature only.
Comparing (C) [log-mel spectrogram (16ch)] with (A) and
(B), (C) obtained a higher score. The reason could be that log-
mel spectrogram (16ch) included both frequency and spatial

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1164



TABLE IV
ACOUSTIC SCENE CLASSIFICATION F-SCORE OF SPATIAL CEPSTRUM IN

SIMULATED ASYNCHRONOUS DATA

Simulated case SINS
All 71.6%

Async. Two 73.4%
One 74.0%

Sync. 79.0%

information. Finally, comparing (D) [score fusion] with (A),
(B), and (C), (D) obtained the highest score on both datasets.
This indicates that the spatial feature and frequency feature
complemented each other.

Table IV shows the classification results of spatial cepstrum
(A) in simulated asynchronous data. Compared asynchronous
cases with synchronous case, the F-scores of asynchronous
cases decreased from that of synchronous case. When the
number of asynchronous microphones was increased, the
performances were getting worse. This indicates that the
performance of using spatial cepstrum was seriously affected
by the asynchronous data.

Figure 5 shows a confusion matrix of the classification
results with DCASE sync. only. From the spatial cepstrum
results, “dishwashing” was often predicted as “cooking.”
Since, in the “dishwashing” and “cooking” cases, sound came
from a kitchen, it was difficult to distinguish them from
only spatial information. In comparison, from the log-mel
spectrogram (16ch) results, “dishwashing” and “cooking” were
distinguished with high accuracies. From the confusion matrix
for the score fusion system, the accuracies of almost all labels
improved. It was also demonstrated that the spatial feature and
frequency-based feature compensated for each other.

V. CONCLUSION

In this paper, we investigated the characteristics of spatial
and frequency-based features as an aspect of asynchronous
acoustic-scene analysis. From an analysis of the DCASE 2018
Task 5 development dataset, we confirmed that 42% of data
was classified as asynchronous data. In addition, almost all
of the asynchronous data belonged to “watching TV” and
“working.” In experiments, we compared synchronous data
with asynchronous data when using the spatial cepstrum, and
it was shown that the spatial cepstrum required synchronous
data to construct reliable systems. Additionally, comparing the
score fusion system with a 16-ch log-mel spectrogram, 1-
ch log-mel spectrogram, and the spatial cepstrum, the score
fusion system obtained the highest F1-score. This shows
that the spatial and frequency-based features of the system
compensated for each other and improved the performance. As
future work, we will investigate the robustness of the spatial
cepstrum to variations of microphone positions.
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