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Abstract—We conduct an analysis on roles of deep neural
networks (DNNs) in an end-to-end acoustic scene analysis frame-
work with distributed sound-to-light conversion devices called
Blinkies. Blinkies transmit sound information as the intensity
of an onboard light-emitting diode (LED). A video camera can
then easily collect acoustic information by capturing the LED
intensities from multiple Blinkies distributed over a large area.
In the end-to-end framework, both sound-to-light conversion
and scene analysis processes are performed using two types of
DNNs: an encoding network and a scene analysis network. These
DNNs are optimized in an end-to-end manner for acoustic scene
analysis. Although the efficacy of the end-to-end framework is
already confirmed, it is unclear what role each network plays
in the framework. In this paper, we examine the role of these
networks through a simulation experiment using intermediate
signal shuffling. Experimental results suggest that an encoding
network does not output scene analysis results, but it achieves
node-specific sound-to-light conversion that encodes spatial infor-
mation of sounds. By using the node-dependent features obtained
by encoding networks, the scene analysis network classifies
scenes.

I. INTRODUCTION

Interest in acoustic scene analysis has recently increased,
and many workshops and competitions have been held [1],
[2]. Acoustic scene analysis is aimed at recognizing activities,
such as “cooking,” “vacuuming,” and “watching TV,” or de-
termining what is going on, such as “being on a bus,” “being
in a park,” and “meeting with people,” from acoustic informa-
tion [3]. For analyzing acoustic scenes with high performance,
some methods utilize multiple microphones at the same time,
that is, a distributed microphone array [4]–[7]. Distributed
microphone array techniques are widely used not only for
acoustic scene analysis but also for other purposes such as
beamforming [8]–[10]. The use of a distributed microphone
array enables us to obtain not only spectral information of a
large area but also spatial information. In contrast, there are
technical challenges in real-time acoustic sensing by using
a distributed microphone array, i.e., cable connection with
wired communication, network bandwidth limitation through
wireless communication, or the synchronization of signals
recorded using microphones.

To solve these challenges, we previously developed a sound-
to-light conversion device called a Blinky shown in Fig. 1 [11]–
[15]. A Blinky measured a sound signal using a microphone. In
accordance with the sound signal, the Blinky modulated the
intensity of an onboard light-emitting diode (LED). Finally,

LED

Mic.

Fig. 1. Distributed sound-to-light conversion device Blinky

a video camera was used to synchronously capture LED
intensities from multiple Blinkies distributed over a large
area. To learn the optimal sound-to-light conversion process
in Blinkies for acoustic scene analysis, we developed an end-
to-end acoustic scene analysis framework with Blinkies [16].
In the end-to-end framework, we train two types of deep
neural networks (DNNs) in an end-to-end manner: an encod-
ing network that transforms a sound signal measured via a
microphone into a signal to be transmitted by an LED and a
scene analysis network that estimates the acoustic scene using
captured LED intensities. The literature [16] showed that the
end-to-end framework can give us more effective sound-to-
light conversion for estimating the acoustic scene than a hand-
crafted sound-power-based conversion. However, it is an open
question what roles are played by the encoding network and
the scene analysis network obtained by end-to-end learning.

Because of such a situation, in this paper, we analyze the
roles of DNNs in the end-to-end framework by a simulation
experiment following a typical acoustic scene classification
setup. For pattern recognition based on a sensor network
such as a distributed microphone array, there are two main
sensor fusion schemes [6], [17]: early fusion and late fusion.
In the early fusion, signals acquired by sensor nodes are
integrated before recognizing patterns. In the late fusion,
pattern recognition is independently performed on each sensor
node, then these results are integrated to obtain the final result.

To confirm whether the end-to-end framework performs
early or late fusion, in the experiment, intermediate signals
between the encoders and the scene analysis network were
shuffled, and we investigated the effect of the shuffling on clas-
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sification accuracy. If the end-to-end framework perform a late
fusion such as a maximum likelihood approach, the shuffling
of intermediate signals should not affect the accuracy. If the
accuracy is degraded by shuffling, the end-to-end framework
may perform early fusion and use the spatial information of
the source or Blinkies for scene analysis.

Experimental results of a simulation experiment using the
DCASE 2018 Challenge Task 5 dataset showed that the classi-
fication accuracy of the end-to-end framework trained without
any shuffling was significantly degraded by the shuffling of
intermediate signals during a test process. This result suggests
that the end-to-end framework performs early fusion, that is,
encoding networks trained without shuffling do not output
scene analysis results but carry out a node-specific sound-
to-light conversion. The node-dependent features obtained by
encoding networks would include the spatial and spectral
information, and they enable the scene analysis network to
classify scenes with high accuracy.

II. END-TO-END ACOUSTIC SCENE ANALYSIS
FRAMEWORK WITH BLINKIES

The use of Blinkies enables us to avoid complicated process-
ing, such as synchronization, in the signal acquisition using
a distributed microphone array. In this section, we briefly
summarize an end-to-end acoustic scene analysis framework
with Blinkies.

A. Overview

Figure 2 shows the proposed end-to-end acoustic scene
analysis framework. In the framework, there is an assumption
that M Blinkies and a camera are placed at fixed locations.
Acoustic scene analysis with Blinkies consists of three parts:
sound-to-light conversion in each Blinky, light signal propaga-
tion in air, and scene analysis by using captured light signals.
Let Nsound, Nlight, Nframe, and Nclass be the length of a sound
signal, the length of a light signal, the number of frames of
a captured light signal, and the number of classes of acoustic
scenes, respectively. The procedure can be written as

Im = Φm(xm), (1)
pm = Ξm(Im), (2)
ŷ = Ψ(p1,p2, · · · ,pM ), (3)

where xm is an Nsound-dimensional vector that indicates
an acoustic signal recorded by a microphone on the m-th
Blinky, Im is an Nlight-dimensional vector that indicates a
light signal emitted by the m-th Blinky, pm is an Nframe-
dimensional vector that indicates a video signal at the m-th
Blinky captured by a camera, and ŷ is an Nclass-dimensional
vector that indicates a predicted scene label. Functions Φm :
RNsound → RNlight ,Ξm : RNlight → RNframe , and Ψ :
RNframe×M → [0, 1]Nclass denote sound-to-light conversion
on the m-th Blinky, light signal propagation between the
m-th Blinky and a camera, and scene analysis processes,
respectively. We use two types of DNNs for Φm(·) and Ψ(·):
an encoding network and a scene analysis network. The former

converts recorded signals into signals that can be effectively
transmitted and are appropriate for scene analysis, and the
latter performs scene analysis. To train these DNNs in an
end-to-end manner, the light propagation Ξm(·) is modeled
as differentiable physical layers.

B. Encoding and scene analysis networks

The sound-to-light conversion Φm(·) in the m-th Blinky
is performed by using an encoding network. The encoding
network is a 1D convolutional neural network (CNN) [18],
and it downsamples microphone signals xm using strided
convolution layers. The downsampling rate is set in accordance
with Blinky’s audio buffer size.

For the scene analysis Ψ(·), a scene analysis network
having a simple VGG-like architecture with 1D convolu-
tion layers [19] is used. Similarly to the encoding network,
downsampling layers in this network are replaced with 1D
strided convolution layers. and the resulting feature map is
transformed by a global average pooling layer into a vector.
The vector is fed into a linear layer to obtain the final scene
analysis results.

C. Differentiable physical layers

Light signal propagation Ξm(·) between the m-th Blinky
and a camera is modeled as two differentiable physical layers:
a light propagation layer and a camera response layer. The
layers enable DNNs to consider physical phenomena.

1) Light propagation layer: LED light from Blinkies prop-
agates in air, and a video camera captures it. The LED light
intensity at the camera is affected by attenuation a depending
on the angle and distance between each LED and the video
camera. In addition to this attenuation, ambient light is added
to the light intensity as a positive bias b.

For these reasons, a light propagation layer models the
signal transmission between a Blinky and a camera using
attenuation a, bias b, and noise ϵ as

Im = axm + b1+ ϵ, (4)

where 1 is a vector whose elements are one and whose size
is the same as that of xm. We assume that attenuation a is
inversely proportional to the square of the distance between a
Blinky and a camera, and ϵ follows a normal distribution. b
can be calculated from the pixel value when the corresponding
LED is not lit.

2) Camera response layer: An imaging sensor on a camera
captures light, and the light is integrated over the time, which
depends on the frame rate Fs,m of the camera. A camera
response layer is a model of the integration on a camera sensor.
This integration can be interpreted as a sampling operation
with low-pass filtering. For this reason, the camera response
layer resamples an input signal Im to the camera frame rate
Fs,m using

pm = resample(Im), (5)

where resample(·) indicates the resample operation. Since
most cameras have a frame rate of 30 fps, we set Fs,m to
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Fig. 2. End-to-end acoustic scene analysis framework with distributed sound-to-light conversion devices (Blinkies)
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Fig. 3. Intermediate signal shuffling for studying end-to-end acoustic scene analysis framework with Blinkies

30 Hz in this work. Note that the nonlinear transform by a
camera such as gamma correction can be avoided by using
raw video frames. Hence, we do not consider such nonlinear
transform in the camera response layer.

III. METHODOLOGY

The efficacy of training both encoding networks and the
scene analysis network is already confirmed in the litera-
ture [16]. However, it is unclear what roles are played by the
encoding networks and the scene analysis network obtained
by end-to-end learning. In particular, which does the end-
to-end framework perform, early fusion or late fusion? For
understanding the roles of the networks, we evaluate the
scene classification accuracy of the end-to-end framework with
shuffling intermediate signals between the encoding networks
and the scene analysis network.

A. Shuffling intermediate signals

Throughout this paper, we use a term ”shuffle” in the
meaning of giving a random permutation. Figure 3 illustrates
how to shuffle intermediate signals. We shuffle the Blinky
signals pm given by Eqs. (1) and (2) and estimate the scene
based on them. It can be written as

ỹ = Ψ(pσ(1),pσ(2), · · · ,pσ(M)), (6)

where σ(·) denotes a random permutation of (1, 2, · · · ,M)
and ỹ is a prediction under the shuffling.

This shuffling makes it difficult for the scene analysis
network to utilize spatial information. For example, even when
the first and second Blinkies are set close to the TV and
kitchen, respectively, the scene analysis network does not
utilize the information explicitly since it does not know which
channels their signals appear. However, we have to note that
this shuffling is different from the spatially shuffling of the
Blinky position. During the end-to-end training, each Blinky
can acquire a different encoder. Then, when we spatially
permutate Blinkies, the relationship between observed sounds

and encoders would change. While in the case of the shuffling
in this paper, the relationship maintains.

In a simulation experiment in Sec. IV, we train the end-
to-end framework with the shuffling in Eq. (6) under the
following three conditions:

• Train both encoding and scene analysis networks without
shuffling, i.e., conditions (a), (b), (c), and (d) in Table I,

• Train both encoding and scene analysis networks with
shuffling, i.e., conditions (e) and (d) in Table I,

• Train both encoding and scene analysis networks without
shuffling, and then train only the scene analysis network
with shuffling, i.e., conditions (g) and (h) in Table I (fine-
tuning).

After that, we test resulting three frameworks with and without
shuffling.

B. Relationship between shuffling and sensor fusion

There is a relationship between shuffling and sensor fusion.
In the case of early fusion, each encoding network performs
a specific sound-to-light conversion for each Blinky node.
The scene analysis network integrates signals from encoding
networks and recognizes scenes. In this case, the classification
accuracy of the framework trained without shuffling will be
degraded by shuffling during testing, and fine-tuning scene
analysis network will not work. In addition, the classification
accuracy of the framework trained with shuffling and tested
without shuffling will be lower than that of the framework
trained and tested without shuffling because spatial informa-
tion of the source or Blinkies can be used in the former case,
in addition to spectral information.

In the case of late fusion, in contrast, each encoding
network independently recognizes scenes and these results
are integrated in the scene analysis network to obtain the
final result. For this reason, shuffling of intermediate signals
should not affect the accuracy or accuracy degradation due
to shuffling during testing can be avoided by fine tuning the
scene analysis network. Since the spatial information cannot
be used in the case of late fusion, the classification accuracy
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Fig. 4. Arrangement of microphone arrays [22]

of the framework trained with shuffling and tested without
shuffling will be almost the same as that of the framework
trained and tested without shuffling.

For this reason, we analyze the end-to-end framework by
shuffling intermediate signals in the next section.

IV. SIMULATION

We simulated the end-to-end framework that is intended to
use Blinkies and evaluated it by an acoustic scene analysis
experiment with the DCASE 2018 Challenge Task 5 develop-
ment dataset [20], [21].

A. Simulation Conditions

The DCASE 2018 Challenge Task 5 dataset is a derivative
of the SINS dataset [22]. It contains a continuous recording
of one person living in a vacation home for one week and
scene labels for classifying sound clips from the recoding
into nine scenes. Figure 4 shows the arrangement of the 13
microphone arrays used to construct the SINS dataset. Al-
though the DCASE 2018 Challenge Task 5 dataset consists of
a development dataset and an evaluation dataset, we used only
the development dataset. This is because the evaluation dataset
has no information on which microphone recorded each clip
in the evaluation dataset. For this reason, we divided the
development dataset into three subsets for training, validation,
and testing. This partitioning was performed in accordance
with a list for cross-validation provided with the dataset, and
each subset contains sound clips from each of the nine scenes.

Sound clips in the DCASE 2018 Challenge Task 5 devel-
opment dataset were recorded with four microphones called
Nodes 1–4 (see Fig. 4). Their length and sampling frequency
are unified to 10 s and 16 kHz, respectively. In these sound
clips, we utilized clips recorded by Nodes 2, 3, and 4 for this
simulation, because the number of clips recorded by Node 1
is different from those recorded by the other nodes.

We prepared three encoding networks and fed clips recorded
by Nodes 2, 3, and 4 into the networks. Signals transformed
by the networks and propagated through the differentiable
physical layers were concatenated and fed into the scene
analysis network, where we assumed that a camera was located
at the center of the living room, as shown in Fig. 4. Under

this assumption, the distances between the camera and Nodes
2, 3, and 4 were set to 1.13, 1, and 1.62, respectively,
with the distance between the camera and Node 3 being
1. These networks were trained with 200 epochs using the
training subset and well-known cross-entropy loss. Here, the
Adam optimizer [23] was utilized for optimization, where the
parameters in Adam were set as α = 0.001, β1 = 0.9, and
β2 = 0.999. The learning rate α was multiplied by 1/10 when
the number of epochs reached 100 and 150. The method by He
et al. [24] was used for initializing the network. The validation
subset was used to check for the overlearning of the networks.

In addition to the end-to-end framework, i.e., the CNN-
based encoding network + physical layers + VGG 1D (CNN
/ VGG 1D in Table I), we also evaluated a non-end-to-end
framework with Blinkies using a sound-power-based sound-
to-light conversion, i.e., power calculation + physical layers +
VGG 1D (Power / VGG 1D in Table I).

B. Results

Table I shows the classification accuracy for the test subset.
From the table, we can confirm that condition (c) achieved
a higher accuracy than condition (a). This result indicates
that training both encoding and scene analysis network in an
end-to-end manner is effective to obtain better sound-to-light
conversion for acoustic scene analysis than the hand-crafted
sound-power-based conversion.

Comparing condition (c) with condition (d), we can see that
the end-to-end framework trained without shuffling is more
sensitive to shuffling during testing. As a result, the accuracy
of the end-to-end framework was significantly decreased, and
this accuracy was lower than that of the non-end-to-end frame-
work with shuffling during testing [see condition (b)]. For this
reason, we think that each encoder trained without shuffling
learned sound-to-light conversion specific to each node. In
addition, this result suggests that the mismatch of microphone
positions during training and testing may be discriminated
from the scene analysis results.

Shuffling during training made DNNs robust against shuf-
fling as shown in conditions (e) and (f), but the accuracy was
not as good as in condition (c) without any shuffling. This
result indicates that spatial information of sounds and/or nodes
are useful for acoustic scene analysis.

Fine-tuning of the scene analysis network with shuffling was
not effective in improving accuracy as shown in conditions (g)
and (h). This means that encoding networks did already per-
form scene classification, but that the scene analysis network
perform classification by appropriately processing the node-
dependent features obtained by the encoding networks.

Figure 5 shows examples of feature maps, i.e., outputs
from camera response layers, obtained by “CNN / VGG
1D” trained with and without shuffling, where Fig. 5 (a)
shows feature maps for a sound clip labeled “vacuum cleaner”
and Fig. 5 (b) shows those for a sound clip labeled “social
activity.” As shown in this figure, the feature maps obtained
by the framework trained without shuffling were different
from those of the framework trained with shuffling. In the
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TABLE I
TOTAL AND CLASS-WISE ACCURACY. END-TO-END ACOUSTIC SCENE ANALYSIS FRAMEWORK (CNN / VGG 1D) WAS TRAINED UNDER THREE
SHUFFLING CONDITIONS: WITHOUT SHUFFLING, WITH SHUFFLING, AND FINE-TUNING. AFTER THAT, RESULTING FRAMEWORKS WERE TESTED

WITH/WITHOUT SHUFFLING.

Condition (a) (b) (c) (d) (e) (f) (g) (h)
Framework Power / VGG1D CNN / VGG1D
Shuffling (Train) without without without without with with fine tuning fine tuning
Shuffling (Test) without with without with without with without with
Total accuracy 0.8038 0.7165 0.9394 0.5347 0.8617 0.8511 0.5729 0.4004
Absence 0.7329 0.7506 0.9484 0.2933 0.9349 0.9358 0.4413 0.1691
Cooking 0.6168 0.1433 0.9283 0.3925 0.5919 0.5296 0.7477 0.5202
Dishwashing 0.4607 0.1573 0.7865 0.1798 0.0787 0.0787 0.2472 0.0449
Eating 0.5245 0.1189 0.8182 0.1049 0.3357 0.4685 0.3566 0.0280
Other 0.7154 0.6000 0.6538 0.5154 0.4538 0.4615 0.7000 0.7692
Social activity 0.7375 0.7375 0.9575 0.2741 0.9575 0.8842 0.7336 0.2857
Vacuum cleaner 0.6333 0.1000 1.0000 0.2667 0.3500 0.0333 0.0167 0.0000
Watching TV 0.8995 0.9344 0.9484 0.9563 0.9703 0.9694 0.6643 0.7893
Working 0.9260 0.7815 0.9753 0.5587 0.9294 0.9209 0.5986 0.2993

Node 2

Node 4
Node 3

0 50 100 150 200 250

0 50 100 150 200 250
Node 2

Node 4
Node 3

(a) Vacuum cleaner
Node 2

Node 4
Node 3

0 50 100 150 200 250

0 50 100 150 200 250
Node 2

Node 4
Node 3

(b) Social activily

Fig. 5. Examples of feature maps. Top of each subfigure shows feature map
of “CNN / VGG 1D” trained without shuffling [condition (c) in Table I] and
bottom of each subfigure shows feature map of “CNN / VGG 1D” trained
with shuffling [condition (d) in Table I]. The horizontal axis shows the discrete
time index (video frame index).

case of vacuum cleaner, the sound of a vacuum cleaner was
heard continuously and the framework trained with shuffling
almost always produced high feature values for all three
nodes. Note that amplitude of the signal from Node 4 become
smaller than those of others since the signal is highly affected
by attenuation. In contrast, feature values obtained by the
framework without shuffling changed complexly. In the case
of social activity, a man talked with a woman and this trend is
more pronounced. In addition, the framework trained without
shuffling yielded a lower feature value for Node 4 when it
provided a higher feature value for Nodes 2 and 3. For these
reasons, it is considered that the framework trained without
shuffling acquired suitable sound-to-light conversion for each
node, and the spatial or spectral information of the sound
source was encoded in the complex changing feature pattern.

V. CONCLUSION

In this paper, we conducted an study on the end-to-end scene
analysis framework intended to use Blinkies to examine roles
of the encoding networks and the scene analysis network by
an simulation experiment using the DCASE 2018 Challenge
Task 5 dataset. In the experiment, we trained and tested the
networks with/without shuffling intermediate signals between

the encoders and the scene analysis network, and we investi-
gated the effect of the shuffling on the classification accuracy.
Experimental results suggest that encoding networks trained
without shuffling did not output scene analysis results but they
achieved node-specific sound-to-light conversion that encodes
spatial information of sounds, and the scene analysis network
classifies scene by using node-dependent features obtained by
encoding networks. It is also suggested that the mismatch
of microphone positions during training and testing may be
discriminated from scene analysis results.

In future work, we will conduct experiments using eight
microphones in the SINS Database in order to study the effects
of the number of Blinkies. In addition, we will develop a novel
method to detect and compensate the mismatch of microphone
positions during training and testing in accordance with scene
analysis results.
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