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Abstract—This paper focuses on automatic detection and 
classification of sounds occurring in dementia care facilities for 
monitoring a resident’s safety and wellbeing. While there has been 
significant advances the field of domestic audio classification 
within the recent years and several audio databases exist, these 
have not been designed for dementia care environments and can 
be limited in terms of the amount of information they provide, 
such as the exact location of the sound sources, and the associated 
noise levels. This work details our approach to generating a 
synthetic database of sound scenes and events that is carefully 
curated to reflect a typical real-world dementia care environment. 
This includes background noise and room impulse responses 
based on a typical one-bedroom apartment (Hebrew SeniorLife 
Facility). The database contains clean and noisy excerpts from 11 
classes with duration of 5-seconds and sampling rate of 16 kHz. 
Using this database, we also explore further development of a 
series compact neural network architecture through our baseline 
model which utilizes Continuous Wavelet Transform scalograms 
as features to the AlexNet. Our compact, MAlexNet-40 approach 
has achieved a 15x reduction in network size, and an improvement 
of about 3% on the weighted F1-score when compared to the 
traditional AlexNet model.  

I. INTRODUCTION 

Dementia, a neurodegenerative ailment experienced by the 
elderly, is commonly associated with cognitive decline [1]. 
Due to its progressive nature, it affects how the resident 
perceives external stimuli, especially noise and light [2]. Hence, 
residents may experience distress, provided that they perceive 
external stimuli differently compared to those unaffected by 
dementia. Such distress may result in wandering and changes 
in behaviour [3,4]. For these reasons, consistent monitoring is 
crucial for maintaining a safe environment for the dementia 
resident. Monitoring systems are commonly used as a form of 
assistive technology to help inform caretakers of the residents’ 
assistance requirement. However, visual monitoring systems 
are often subject to privacy concerns [5,6]. Thus, audio-based 
systems, which detect sounds that may indicate a resident’s 
need for assistance, are generally less intimidating compared to 
visual monitoring. This paper focuses on audio-based systems 
that can automatically classify recorded sounds using neural 
network approaches. 

Neural network-based sound classification systems require 
an appropriate database for training the network. The Sound 
Interfacing through the Swarm (SINS) database is a domestic 
acoustic scene database, which is composed of 9 different 
recording categories, sampled at 16 kHz [7]. Although this is 
sufficient to conduct an initial experiment, and to test the 
classification effectiveness of the proposed system, there are 
several limitations, especially when conducting an in-depth 
analysis of the system performance. Firstly, while the recording 
consisted of 13 nodes across a number of rooms, where each 
consist of a linear array of four microphones [7], the data 
provided publicly is extracted solely from the first four receiver 
nodes of only the living room and kitchen area. Further, the 
database was created for domestic audio environments rather 
than dementia care environments that might include sounds 
deemed dangerous to residents. Similarly, the exact locations 
of the sound sources are not provided in the SINS database. 

Hence, this paper describes a new synthetic database that can 
address these limitations and includes additional disruptive 
sounds commonly faced in a dementia resident’s environment. 
Further, it also allows the recreation of scenarios that could 
occur in real-world settings, including noisy environments, and 
various source-to-receiver distances. Furthermore, this will 
also provide the exact locations of the sound sources, which 
will be useful for sound location estimation purposes. Creating 
a synthetic database for dementia care environments also 
avoids ethical considerations that would arise if creating and 
sharing recordings made in a real environment. This allows for 
new systems to be developed and refined that might later be 
tested in real environments following appropriate ethical 
procedures.  

Neural networks used for healthcare monitoring purposes 
are required to be compact, in order to fit mobile or embedded 
devices with limited resources. However, the majority of the 
compact networks developed in the recent years possess 
complex, Directed Acyclic Graph (DAG) architectures. Hence, 
customizations pose risks in affecting the overall network 
predictive power and potential overfitting [8].  

Thus, in order to be able to develop an effective compact 
neural network while keeping overfitting possibilities at a 
minimum, using the dataset described in this paper, we look at 
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the series architecture, compact neural network model 
presented in our recent work [9]. This was developed through 
reducing the overall network complexity by modifications of 
layer architectures and parameters. The series architecture 
constitutes of layers arranged one after another, which allows 
for better customizability and lower complexity, which lessens 
the risks of overfitting[10]. In this work, the effects of 
normalization, learning and regularization parameter 
adjustment, and optimization algorithms to compact neural 
networks will be explored towards network optimization.  

Section II of this paper provides describes the details for 
generating the synthetic database. Section III then discusses the 
process of synthesizing and refining the database, eliminating 
the potential of biasing and overfitting, as well as the 
integration of noise into the clean signals in order to create a 
more realistic database. Section IV then describes the theory 
behind the approaches examined for compact neural network 
development, followed by Section V, which details the relevant 
results yielded. Finally, the concluding section gives 
suggestions to improve and extend the scope for future work. 

II. GENERATING THE SYNTHETIC DATABASE 

The following sections provide detailed information about 
the simulated sound scenes likely to happen in a realistic 
dementia resident care facility, the simulated recording setup 
and the synthesized Room Impulse Responses (RIRs).  

 
A. Sound Scenes in Dementia Care Environments 

Monitoring disruptive noises for dementia residents can be 
challenging, even for healthcare professionals, as sound levels 
acceptable to staff may be distressing for dementia residents. 
This is due to the fact that dementia may worsen the effects of 
sensory changes, as the progressive nature of this ailment may 
alter how the resident perceives external stimuli, such as 
acoustic noise pollution [11]. A summary of possible negative 
impacts caused by disruptive noise levels to dementia residents 
is provided below: 
- As hearing is linked to balance, aural disruption could lead 

to greater risks of falls, either through loss of balance [12], 
or through an increase in disorientation as a result of people 
trying to orientate themselves in an overstimulating 
environment [11]. 

- It has been proven that dementia residents respond on a more 
sensory level, rather than intellectually. For example, they 
note the body language or tone of voice, rather than what 
people actually say [13]. Since people with dementia have a 
reduced ability to understand their sensory environment, 
when combined with age-related deterioration in hearing, it 
can be overwhelming. 

- Other research suggests that wandering behaviour in 
dementia residents may be their way to try to remove 
themselves from an overstimulating situation [14].  
 
 
 
 

Table I.  Dry Sample Sources and Licensing Summary. 
Database Categories Used License 
DESED Synthetic 
Soundscapes [15] 

Alarm, Blender, 
Frying, Shaver, 
Water 

MIT Open 
Source Initiative 

Kaggle: Audio Cats 
& Dogs [16] 

Cat, Dog CC BY-SA 3.0  

Open SLR: 64 and 
70 [17]  

Speech (Marathi 
Multi-speaker, 
English) 

CC BY-SA 4.0 

FSDKaggle2019 
[18] 

Scream, Slam, 
Shatter 

CC BY-4.0  

FSD50K [19] Dishes CC BY-4.0  
SINS Database [7] Absence / Silence CC BY-NC 4.0 
UrbanSound8k [20] Background Noises  CC BY-NC 3.0  

 
The following are examples of disruptive noises that 

residents normally experience [11]. Considering these, Table 1 
summarizes the sources of the dry sample excerpts from which 
this database was generated along with the types of sounds 
extracted from them: 
- Sudden noises: such as toilet flushes, alarms, glass 

shattering. 
- Unnecessary noises: such as television that is not being 

watched, people talking, and loud music. Eliminating 
unnecessary noise can reduce the risks of aggression in noisy 
environments. 

- Sounds in open spaces: some sounds appear louder in open 
spaces, for example, noises from a kitchen and dining area, 
the wheels of a tea trolley or the sound of conversations or 
laughing. 

- Inappropriate noise timing: acoustic noise pollution at 
night can result in disturbed sleep which in turn can lead to 
problems during the day, such as lack of concentration, and 
difficulty communicating and performing during the day. 

 
 

B. Simulated Recording Setup 
The generation of the synthetic database is based on a 999 

square-foot one-bedroom apartment in Hebrew Senior Life 
Facility [21], illustrated in Figure 1. We assume a 3-m height 
for the ceiling of the apartment. Multi-channel recordings were 
created using node receivers placed on every four corners of 
each of the six rooms concerned, at 0.2 m below the ceiling. 
Each node receiver is a microphone array composed of four 
linearly arranged omnidirectional microphones with 5 cm 
inter-microphone spacing, as shown in Figure 2. In turn, this 
creates 4-channel array recordings for every node. In this work, 
we consider each recording separately when inputting into the 
neural network. 

The room dimensions, source and receiver locations, wall 
reflectance, and other relevant information were used in order 
to compute the impulse responses for each room. These are 
then convolved with the dry sounds, specifying their location, 
in order to create the synthetic data. Details regarding the 
process of sound synthesis are provided in the succeeding sub-
section of this paper. 
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Fig 1 One-bedroom apartment in Hebrew SeniorLife Facility [21]. 

 
Fig 2 Microphone Array Geometry for a single node: Four linearly spaced 

microphones. 
 

C. Synthesized Room Impulse Responses (RIRs) 
The impulse response were synthesized at a sampling rate of 

16 kHz, using the image method and using the implementation 
for directional sound sources [22]. As well as sounds with fixed 
source positions, such as flowing water through a sink and an 
alarm clock, moving sounds, such as speech and animal sounds, 
were created using multiple impulse responses corresponding 
to different source locations. All relevant information 
regarding the room dimensions, as well as source and receiver 
locations, are provided in the technical documentation of the 
DASEE dataset [23]. 

The wall reflection coefficients utilized in the convolution 
process also vary for each room, depending on the percentage 
of obstruction by furniture, and whether it is a regular wall, 
floor, or ceiling. Table 2 provides the average room reflectance 
depending on the percentage of walls that are obstructed, using 
common wall reflectance coefficients [24]. Similarly, 
according to the European Standard EN 12464, ceilings have a 
typical wall reflectance coefficient of 0.7-0.9, walls have 0.5-
0.8, and floors have 0.2-0.4 [25]. 

 
 
 
 

Table 2. Average room reflectance for varying wall reflectance and 
obstruction percentages [24]. 

 

 Table 3. Wall reflectance coefficients used to synthesize the DASEE database 
Room Reflectance Obstruction (%) Reflectance Used 
Bedroom Walls – 0.5 

Ceiling – 0.7 
Floor – 0.2 

Walls – 30, 50, 
70, 30 
Ceiling – 0 
Floor – 30 

Walls – 0.568, 0.572, 
0.576, 0.568 
Ceiling – 0.7 
Floor - 0.488 

Living or 
Dining  

Walls – 0.5 
Ceiling – 0.7 
Floor – 0.2 

Walls – 30, 50, 
50, 20 
Ceiling – 0 
Floor – 30 

Walls – 0.568, 0.572, 
0.572, 0.568 
Ceiling – 0.7 
Floor – 0.488 

Kitchen Walls – 0.6 
Ceiling – 0.8 
Floor – 0.3 

Walls – 30, 30, 
30, 30 
Ceiling – 0 
Floor – 20 

Walls – 0.594, 0.594, 
0.594, 0.594 
Ceiling – 0.8 
Floor – 0.515 

Bath Walls – 0.7 
Ceiling – 0.8 
Floor – 0.4 

Walls – 20, 30, 
0, 0 
Ceiling – 0 
Floor – 30 

Walls – 0.626, 0.62, 
0.7, 0.7 
Ceiling – 0.8 
Floor – 0.541 

Half-bath Walls – 0.7 
Ceiling – 0.8 
Floor – 0.4 

Walls – 20, 20, 
0, 0 
Ceiling – 0 
Floor – 30 

Walls – 0.626, 0.626, 
0.7, 0.7 
Ceiling – 0.8 
Floor – 0.541 

Dressing 
Room 

Walls – 0.5 
Ceiling – 0.7 
Floor – 0.2 

Walls – 80, 80, 
20, 20 
Ceiling – 0 
Floor - 30 

Walls – 0.578, 0.578, 
0.565, 0.565 
Ceiling – 0.7 
Floor – 0.488 

 
According to these guidelines, taking into consideration the 

wall type and obstruction percentages, the wall reflectance 
coefficients utilized in the setup for the generation of the RIR 
are seen in Table 3. The same wall reflectance coefficient was 
used for the four sides of the walls, and different coefficients 
were used for the ceiling, and the floor, as per the European 
Standard EN [24]. 

 

III. DATA SYNTHESIS AND REFINEMENT 

For the DASEE database, only single source excerpts were 
taken from the three databases (DESED, Freesound and SINS) 
and, if required, converted through bandpass interpolation to a 
common 16 kHz sampling frequency. After this, they are 
subject to a six-step synthesis and refinement method, as 
summarized in Figure 3.  

 

Walls 
Obstruct 

Wall Reflectance 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

20% 0.475 0.505 0.535 0.565 0.596 0.626 0.656 
30% 0.488 0.515 0.541 0.569 0.594 0.620 0.647 
40% 0.502 0.524 0.547 0.570 0.592 0.615 0.638 
50% 0.515 0.534 0.553 0.572 0.591 0.610 0.628 
60% 0.529 0.544 0.559 0.574 0.589 0.604 0.619 
70% 0.542 0.553 0.565 0.576 0.587 0.599 0.610 
80% 0.555 0.563 0.571 0.578 0.586 0.593 0.601 
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Fig 3 DASEE Database Synthesis and Refinement Process. 

 
As illustrated in Figure 3, raw audio data is first convolved 

with the relevant RIRs generated per channel. All excerpts are 
then cut into segments with 5-s duration each. Finally, these are 
then scaled to have the same loudness.  

However, since longer durations are divided into segments 
of 5-s, some of these segments are not guaranteed to contain 
the desired sound event. Therefore, a neural network-based 
filtration method is utilized in order to remove unwanted audio 
files. Excerpts of 1000 audio files that do not contain sound 
events and scenes are categorized as ‘Silence’, while 1000 
audio files that contain desired sounds are labelled as ‘Desired 
Sounds’. Lastly, another set containing 1000 files is 
categorized with the label ‘Noise’. Through this, a three-level 
classifier was developed through the FFT-based Continuous 
Wavelet Transform (CWTFT) scalograms and CNN method 
via AlexNet pre-trained network, which was derived from our 
previous work [27], where this combination was found to 
provide accurate results for domestic acoustic classification [26, 
27]. This network is then used to classify the entire synthesized 
database. Only those that fell under the ‘Desired Sounds’ 
category are kept, and those that fall under the two are filtered 
out as misclassified data. 

 
A. Background Noise Integration 

In order to reflect a realistic environment, recordings with 
background acoustic noise are also included in the database. 
For the background noise, we used excerpts from the Noise 
Urban Sound 8K database [20]. Data from noise sounds that 
are more relevant for a dementia resident’s environment is 
selected from this database, including: air conditioner, children 
playing, and street music. Aside from this, white noise is also 
added as background noise for some files. 

The air conditioning background noise was assumed to be 
placed near the walls, elevated slightly lower than the ceiling, 
while noises such as “children playing” and “street music” 
were placed near open windows and relevant RIRs were used 
to simulate this noise at the recording locations. Background 
noise was added at Signal-to-Noise (SNR) levels of 15 dB, 20 
dB, and 25 dB and using Matlab functions from [28].  

 
B. Curating an Unbiased Database 

The database developed contains recordings from the four 
different nodes across each room. Further, there are 4 instances 
of these from the addition of the noise for the same sound at 3 
different SNR levels. This is shown in Figure 4. 

 
Fig 4 DASEE database Training and Testing Data Curation Process. 

 
Table 4 Summary of the Training and Testing Data. 

Category Training Data Testing Data 
Absence / Silence 11286 876 
Alarm 2765 260 
Cat 11724 1080 
Dog 6673 792 
Kitchen_Activities 12291 1062 
Scream 4308 376 
Shatter 2877 370 
Shaver_toothbrush 11231 1077 
Slam 1565 268 
Speech 30113 2374 
Water 6796 829 
TOTAL 101629 9364 
 
As illustrated in Figure 4, the training and testing sets were 

constructed to avoid the chances of overfitting. In particular, 
each node is assigned with one of each specific noise levels, 
while the fourth nodes are assigned with the clean signal. This 
ensures that all four instances will have significant differences. 
Similarly, they will also have different noise levels, as it would 
in real life recordings, where a certain noise can be closer to a 
single node compared to the other nodes in the same room. 

Table 4 summarises the database resulting from this curation 
process, where all instances of any recording that exists in the 
test set has been removed from the training set. It is important 
to note that smaller categories such as “Dishes” and “Frying”, 
have been combined into one folder called “Kitchen Activities”. 
This was found to help with biasing and overfitting.  

IV. EXPLORING COMPACT NEURAL NETWORK FACTORS 

In our previous work [29], we developed the MAlexNet-33, 
a series architecture compact neural network model developed 
through constraining the model complexity via layer 
modification and hyperparameter adjustments of the original 
AlexNet model. In this section, we explore other factors that 
may influence, improve the performance, and lessen the 
possibilities of overfitting the pre-trained compact neural 
network model through regularization models. These include: 
normalization layers, convolutional layer learning and 
regularization parameter variations, and the effects of different 
optimization algorithms. 
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Fig 6 Comparison of the Different Normalization Layers in terms of the 

Activation [32] 
 
A. Normalization Layers 

Normalization is applied in neural network architectures in 
order to smoothen the gradients, achieve a faster training time 
and a better computational performance [30] and is typically 
applied in between convolutional layers and non-linearities, 
such as activation functions. Several normalization techniques 
currently exist [31] including batch normalization, layer 
normalization, group normalization, instance normalization, 
and cross-channel normalization, which is commonly applied 
post max-pooling layers. 

Fig. 6 provides illustrates how the different normalization 
layers compare in terms of their activation [32]. Provided the 
activation of the shape, where N represents the observations 
and C represents the channels, the batch normalization layer 
normalizes within the N direction, whereas the layer and 
grouped normalization layers normalize within the C direction, 
provided that grouped normalization divides the channels into 
groups, prior to normalizing each of those groups individually. 
The instance normalization, however, normalizes an individual 
channel and at a particular observation one at a time. 

Considering their functionalities, the batch normalization 
layer is advantageous for convolutional neural networks, 
however, this does not perform well in terms of recurrent 
neural networks due to the dependency on the previous mini-
batches [31]. Nonetheless, the layer normalization layer 
removes such dependency by normalizing across the direction 
of the features as opposed to the mini batches [30], a technique 
which is also adopted by the group normalization layer.  

 
B. Convolutional Layer Learning and Regularization 

Parameter Modification 
Aside from the number of output parameters, convolutional 

layers also consist of other hyperparameters that can be 
customized in order to determine the best fit to the neural 
network. In this experiment, the response of the neural network 
architecture is examined in terms of modifying the learning and 
regularization hyperparameters of the 2D and grouped 
convolutional layers present within the network architecture, 
including the weight learn rate factor, weight L2 factor (weight 
decay), bias learn rate factor, and bias L2 factor [33]. 

By default, the traditional AlexNet network sets the learn 
rate and L2 factors of the weight to 1, while bias learn rate 
factor is set to 2. Finally, the bias L2 factor is set to 0. This is 
because regularization is used in order to avoid overfitting, and 
to smoothen the slopes of the weights. Since biases are 
considered to be “intercepts of the segregation” [34], they do 
not need smoothening or regularization. 

 

C. Optimization Algorithms 
Training neural network models involve multiple iterations 

of minimizing losses and learning the parameters that converge 
to the desired function, which is achieved through an 
optimization algorithm [35]. During the training process, the 
model yields an output for every iteration, prior to calculating 
the difference between the yielded and desired output, aiming 
to minimize this variation as much as possible. There are 
various types of optimization algorithms available. However, 
for this experiment, the response to three specific optimization 
algorithms is examined, which include: [35]: 

 

• Stochastic Gradient Descent with Momentum (SGDM) 
Optimizer [36]: calculates the gradient on one individual data 
element at a certain time. The incorporation of the 
momentum aids in accelerating the SGD into the correct 
direction, which dampens the oscillations accordingly and 
speeds up convergence. This also overcomes disadvantages 
concerning noise in weight updates, provided its denoising 
capabilities [37].  

• RMSProp Optimizer [38]: that computes adaptive gradients, 
and accumulates these into an exponentially decaying 
weighted average.  

• Adaptive Moments Optimizer [39]: is a fusion of the SGDM 
and the RMSProp optimizers, such that it accumulates an 
exponentially decaying weighted average, as per the 
RMSProp, in addition to retaining the exponentially 
decaying averages of the past gradients, as per SGDM [37]. 
A bias correction mechanism is also applied. Further, the 
update operation solely takes into consideration the smooth 
version of the gradient, and the decaying average is 
computed between the past gradient and the past squared 
gradient. 

V. RESULTS 

This section details the yielded results and observations in 
relation to the developed series compact network. The 
following approaches use the FFT-based Continuous Wavelet 
Transform (CWT) scalograms as features to the model, which 
provided accurate results in previous work [27]. These 
scalogram features result from mapping the average of the four-
channels of each recording. The performance was assessed 
through several evaluation metrics, inclusive of the Accuracy, 
Precision, Recall, and F1-scores. Further, the use of weighted, 
micro, and macro F1-score averaging was used to take into 
consideration the imbalance throughout the dataset developed.  

 
A. Baseline Model 

In this section, we provide a per-level and overall 
preliminary results report on the dataset presented in this paper 
using a baseline technique, which uses the AlexNet pre-trained 
model. The results for this is summarized in Table 5. 

As observed, results attained using this dataset remains to be 
consistent with findings communicated in our previous work 
[27] using the SINS database, as per the DCASE 2018 Task 5 
Challenge. The FFT-based CWT scalograms consistently 
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outperformed other feature sets. The slight inconsistency in the 
performance figures observed throughout the classes is due to 
the presence of both sound events and scenes in the dataset.   

 
B. Exploring the Effects of Normalization Layers 

Exploring the effects of the normalization layers within the 
current network architecture yielded results detailed in Table 6, 
where FC6 refers to the output of the first fully connected layer, 
and FC7 refers to the output of the second fully connected layer. 
The output of the last fully connected layer corresponds to the 
number of classes the system aims to identify. 

For these experiments, an epsilon value of 10−5 is used for 
all normalization layers, while the global learning rate is 
specified as 10−5 . Similarly, learning and regularization 
hyperparameters for the normalization layers, including the 
offset learn rate factor, offset L2 factor, scale learn rate factor, 
and scale L2 factor are all set to 1 unless otherwise specified in 
the table. The offset initializer is set at 0, while the scale 
initializer is set at 1. In the case of the grouped normalization 
layer, the group division is kept at 2, provided that all grouped 
convolutional layers used in the network have two groups. For 
the case of the batch normalization layer, which requires two 
extra parameters in the form of mean and variance decay, the 

values for both of these are set at 0.1, respectively. Finally, the 
Leaky ReLU with a parameter value of 0.01 was consistently 
used as the activation function for the network, provided that 
this returned the best performance as per our recent work [29]. 

As observed, incorporating grouped normalization layers for 
each grouped convolutional layer yielded the best performance 
when compared to the other normalization layers. This can be 
justified by the suitability of this normalization layer to the 
grouped convolutional layers used in our model. True to the 
purpose of normalization layers, incorporating this to the 
model allowed for more consistent results in between cross-
validations, and has also improved the performance of the 
previous version of our compact network from between 86-
88% to between 87-89% weighted F1-score. 

 
C. Convolutional Layer Learning and Regularization 

Parameter Modification 
Subsequent to the investigation involving normalization 

layers, this section explores the effects of variations in 
convolutional layer learning and regularization parameter. This 
involves the weight and bias learning and L2 parameters 
between both convolutional and fully connected layers. The 
results for this are summarized in Table 7.  

 
Table 5 Per-level and Overall Results Summary: FFT-based CWT scalograms 

Category Train Test TP FP FN Accuracy Precision Recall F1-score 
Absence  11286 876 876 2 0 100.00% 99.77% 100.00% 99.89% 
Alarm 2765 260 168 86 92 64.62% 66.14% 64.62% 65.37% 
Cat 11724 1080 1054 193 26 97.59% 84.52% 97.59% 90.59% 
Dog 6673 792 580 34 212 73.23% 94.46% 73.23% 82.50% 
Kitchen 12291 1062 878 385 184 82.67% 69.52% 82.67% 75.53% 
Scream 4308 376 317 88 59 84.31% 78.27% 84.31% 81.18% 
Shatter 2877 370 289 58 81 78.11% 83.29% 78.11% 80.61% 
Shaver 11231 1077 765 224 312 71.03% 77.35% 71.03% 74.06% 
Slam 1565 268 178 54 90 66.42% 76.72% 66.42% 71.20% 
Speech 30113 2374 2374 42 0 100.00% 98.26% 100.00% 99.12% 
Water 6796 829 608 111 221 73.34% 84.56% 73.34% 78.55% 
TOTAL 101629 9364 8087 1277 1277 86.36% 86.36% 86.36% 86.36% 

Weighted 86.36% 86.72% 86.36% 86.24% 
Macro 81.03% 82.99% 81.03% 81.69% 

Table 6 Effects of Various Normalization Layers 
Normalization Layers FC6 FC7 Size W-F1 Comments 

Group 40 384 172 14.35 MB 88.50% Applied a Grouped Normalization Layer for each grouped 
convolution, with a scale learning rate of 1. 

Group 40 384 128 14.35 MB 88.65% Same as the above experiment, but with FC7 output as 128. 
Batch + Group 42 384 172 14.36 MB 85.97% Added Batch Normalization Layers for every 2D convolution, and 

Group Normalization for every Group Convolution. 
Instance 40 384 172 14.35 MB 83.26% Applied Instance Normalization Layers for each grouped 

convolution. 
Layer 40 384 172 14.35 MB 86.91% Applied Layer Normalization Layers for each grouped 

convolution. 
Instance + Group 42 384 172 14.36 MB 83.92% Applied Instance Normalization Layers for every 2D convolution, 

and Group Normalization for every Group Convolution. 
Layer + Group 42 384 172 14.36 MB 87.42% Applied Layer Normalization Layers for every 2D convolution, 

and Group Normalization for every Group Convolution. 
Group + Cross-
channel 

41 384 172 14.35 MB 88.11% Applied Grouped Normalization Layers for each grouped 
convolution, and a Cross-channel Normalization before each max 
pooling layer. 
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Table 7 Learning and Regularization Hyperparameter Study 
Properties Experiment Number 

1 2 3 4 5 6 7 
FC6 384 384 384 384 384 384 192 
FC7 128 128 96 96 64 64 48 
Convolutional Learning and Regularization Parameters 
Weight Learn Rate 2 2 1 2 1 3 1 
Weight L2 Factor 2 2 1 2 1 3 1 
Bias Learn Rate 4 4 2 4 2 6 2 
Bias L2 Factor 0 0 0 0 0 0 0 
Fully-connected Learning and Regularization Parameters 
Weight Learn Rate 1 2 1 2 1 3 1 
Weight L2 Factor 1 2 1 2 1 3 1 
Bias Learn Rate 1 2 1 2 1 3 1 
Bias L2 Factor 0 0 0 0 0 0 0 
Weight F1 (%) 87.48 88.72 89.03 88.58 89.46 89.08 88.39 
Net size (MB) 14.28 14.28 14.23 14.23 14.18 14.18 14.10 

 

As observed, variations on the weight and bias learning and 
L2 factors do not make much significant impact on the system 
performance, both in terms of the network size and the 
accuracy. Nonetheless, the optimum combination observed 
uses a weight learn and L2 factor of 1 for both convolutional 
and fully-connected layers. Accordingly, a bias learn rate of 2 
is used for convolutional layers, while a factor of 1 is utilized 
for fully-connected layers. For both layers, the bias L2 factor is 
kept at 0. As discussed earlier, biases do not require 
smoothening or regularization, provided that they are intercepts 
of segregation.   

 
D. System Response to Various Optimization Algorithms 

Finally, the system response to the three different 
optimization algorithms discussed in the previous section is 
considered. It is important to note that the previous experiments 
have been conducted using the SGDM optimizer. As per the 
results provided in Table 7, the optimum 40-layer compact 
network (MAlexNet-40) has yielded a weighted F1-score of 
89.46%.  

In this section, we consider training the same network 
through the other two optimization algorithms discussed 
(RMSProp and Adam optimizer). The results for these are 
provided in Figures 7 and 8 in the form of confusion matrices. 

 
Fig 7 Confusion Matrix for MAlexNet-40 trained using the RMSProp 

Optimizer Algorithm 

 

 
Fig 8 Confusion Matrix for MAlexNet-40 trained using the Adam Optimizer 

Algorithm 
 

The above confusion matrices yielded a weighted F1-score 
of 88.55% for the RMSProp, and 86.05% for the Adam 
optimizer. As observed, the SGDM optimizer produced the 
best performance for the MAlexNet-40 network architecture at 
89.46%, provided that it is a simpler, Series Network format. 
For more complex architectures, such as the DAG, the Adam 
optimizer is found to have a good performance [35]. As 
discussed previously, every optimization algorithm possesses 
relevant advantages and suitability that can be examined 
depending on the neural network architecture. 

VI. CONCLUSION 

This paper details the process we used to generate a synthetic 
domestic acoustic scene and event database for the design and 
evaluation of a neural network-based approach to classifying 
sounds commonly experienced in a dementia care environment. 
The database was simulated in an acoustic environment that 
was designed to closely match a real-world dementia care 
facility, with simulated recordings from microphone arrays and 
sound sources at various locations in different rooms. The 
database is released publicly in order to be utilized for future 
research. The paper also describes the design of a compact 
neural network, MAlexNet-40, for classifying sounds in this 
database and describes experiments designed to evaluate the 
impact on performance of different hyper parameter choices 
and other architectural modifications. MAlexNet-40 is a 40-
layer series compact neural network model which produced an 
average weighted F1-score of 89.46% at a 14.35 MB network 
size. This is a considerable improvement from the AlexNet 
model, which returned an F1-score of 86.24% at 222.71 MB 
network size. The MAlexNet-40 is an improved version of our 
previously developed compact neural network model, the 
MAlexNet-33 [9].  Through the utilization of  grouped 
normalization layers and refined hyperparameter factors with 
an SGDM optimization algorithm, this compact model 
maintains the customizable, series network format of the 
MAlexNet-33, while improving the consistency of the network 
performance upon cross-validations, and slightly increasing the 
average F1-score from 87.92% to 89.46%. 
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