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Abstract—Wave-U-Net is an end-to-end single-channel source
separation method that works in the time domain and thus can
take the phase information into account during separation. It has
shown high performance in tasks such as singing voice separation
and speech enhancement. We previously proposed an extension of
Wave-U-Net to online processing with a short input using teacher-
student learning. Since online Wave-U-Net processes input signals
frame-by-frame, where the frames are segmented by applying
a window function, the window length is generally the lower
bound of the algorithmic delay. In this paper, based on the
fact that the separation performance of online Wave-U-Net is
concentrated at the center of the segment, we propose to reduce
the algorithmic delay by applying windows with a zero region
near the edges into the online Wave-U-Net. Experimental results
showed that the proposed method reduced the algorithmic delay
by 40% of that of the conventional method while keeping the
high speech enhancement performance with source-to-distortion
ratio improvement of about 15 dB, thus enabling low-delay and
high-performance speech enhancement.

I. INTRODUCTION

Since noise inevitably reduces the intelligibility and quality
of speech in real-world environments, speech enhancement
techniques [1] are used in various speech processing systems,
such as speech recognition systems, hearing aid devices,
teleconference systems, and in-car communication. Recent
advances in deep neural networks (DNNs) have markedly im-
proved the performance of monaural speech enhancement [2].
A wide variety of network architectures have provided various
approaches [3], [4], [5], [6] to accomplish speech enhancement
in the time-frequency (TF) domain with high performance.
The general idea of these methods is to train a DNN to learn
a nonlinear mapping from spectral magnitudes of the noisy
speech obtained with the short-time Fourier transform (STFT)
to those of clean speech or a TF mask. The waveform of
enhanced speech is then obtained by applying the inverse
STFT (iSTFT) using the enhanced magnitude and noisy phase.
However, there are two downsides in these methods. First, the
use of a noisy phase limits the enhancement performance. The
phase information has been shown to be essential for improv-
ing speech intelligibility and quality [7], [8], which should also
be considered in the optimization. Although some attempts
[9], [10], [11], [12] have been made to address this problem
by applying phase-aware estimation and have been shown to
boost the performance, performance limitations remain owing
to the lack of constraints on STFT consistency and mixture
consistency [13]. Secondly, effective source separation in the

frequency domain requires high frequency resolution, which is
obtained over a long analysis window. This results in relatively
high system latency in real-time applications since the window
length bounds the minimum latency.

Another promising way to address these problems is to di-
rectly perform source separation in the time domain [14], [15],
[16]. Wave-U-Net is one such method, which was proposed
for singing voice separation [16] and then applied to speech
enhancement [17]. Wave-U-Net for speech enhancement uses
a one-dimensional (1D) convolutional neural network (CNN)
with a series of downsampling and upsampling blocks to
estimate clean speech when an utterance with noise is input.
Since Wave-U-Net does not perform an STFT, there is no
need to consider STFT consistency or high frequency reso-
lution. Moreover, the estimated noise signal is obtained by
suppressing the estimated speech signal from the mixtures
so that the mixture consistency holds. These characteristics
are particularly suitable for conversational applications that
require online processing with low latency.

On the basis of these properties, we have extended Wave-
U-Net to online methods [18] and confirmed that speech
enhancement with high-quality can be achieved even for block
processing with short segments as input by using teacher-
student learning (also known as knowledge distillation) [19].
With this extension, we have shown that online Wave-U-Net
can achieve source-to-distortion ratio improvement (SDRi) of
8.73 dB with an algorithmic delay of 4 ms and SDR of 12.12
dB with an algorithmic delay of 64 ms. These results indicated
that there was a tradeoff between the performance and the
algorithmic delay, which is generally lower bounded by the
length of input segments.

In this paper, to achieve low latency with high speech
enhancement performance, we propose online Wave-U-Net
with a low-overlap window to reduce the algorithmic delay
instead of shortening the length of input segments. The low-
overlap window has been used in speech compression [20],
which has zero regions at both ends of the window and can
segment signals shorter than the length of window. Therefore
it is able to reduce the algorithmic delay while keeping the
same input length. In addition, since Wave-U-Net directly
performs enhancement in the time-domain with a network,
we can expect that the effects of the frequency response of the
window function can be modeled by the network and learned
from the training data. Therefore, it will not have a significant

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1210978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



Fig. 1. Network structures of offline (left) and online Wave-U-Net (right) used in teacher-student learning.

impact on the speech enhancement performance.
The rest of paper is organized as follows. In Section II,

we provide a brief review of the offline and online Wave-
U-Net. In Section III, we introduce the technical details of
the proposed online Wave-U-Net with low-overlap window.
In Section IV, the effectiveness of the proposed method is
demonstrated by speech enhancement experiments simulated
as a in-vehicle communication by using measured driving
noises. We conclude this paper in Section V.

II. SPEECH ENHANCEMENT WITH WAVE-U-NET

A. Offline Wave-U-Net

In this section, we describe the problem formulation and
network structure of single-channel speech enhancement using
offline Wave-U-Net [17]. Given an input observed mixture sig-
nal m(t) = s(t) + n(t), where m(t) ∈ [−1, 1], s(t) ∈ [−1, 1],
and n(t) ∈ [−1, 1] are the mixture, target speech signal, and
noise signal, respectively, the aim of offline Wave-U-Net is to
estimate the clean speech signal

ŝ(1), . . . , ŝ(T ) = Fθ(m(1), . . . ,m(T )) (1)

with the whole observed mixture signal m(1), . . . ,m(T ).
Here, Fθ(·), represented by a neural network with parameter
θ, denotes a nonlinear mapping from the mixture signals to
the clean speech signal and t = [1, . . . , T ] denotes the time
index. To meet the mixture consistency, the estimated noise
signal is computed as

n̂(t) = m(t)− ŝ(t). (2)

The network parameters θ are trained by minimizing the mean
square errors (MSE) between the estimated and clean signals,
which is expressed as

L = E
[
|ŝ(t)− s(t)|2 + |n̂(t)− n(t)|2

]
. (3)

For the network architecture, Wave-U-Net is designed to
consist of an encoder and a decoder, which are composed of
L downsampling (DS) blocks and upsampling (US) blocks
followed by a 1D convolutional layer each, namely, the

bottleneck layer and output layer. An illustration of the offline
Wave-U-Net architecture is shown as the teacher model in the
left of Fig. 1. The DS blocks stack a 1D CNN layer followed
by a nonlinear function and then halves the feature resolution
by discarding every other feature, and the US blocks stack a
US layer and a 1D CNN layer with nonlinearity, where the
US layer applies convolution after recovering the intermediate
values by interpolation to double the feature resolution. Note
that instead of using transposed convolution layers that apply
convolution after padding zeros between each original value,
performing upsampling with interpolation can avoid aliasing
artifacts caused by zeros, which may degrade the enhancement
performance. Except for the output layer, where the Tanh
nonlinearity is used to constrain the output values in the
interval of [−1, 1], the nonlinear functions used in the network
are Leaky ReLU [21].

B. Online Wave-U-Net

We previously extended the above offline Wave-U-Net to
online processing with sequential block-wise speech enhance-
ment [18]. Instead of performing speech enhancement on
all mixture signals {m(t)}t=1,...,T , we perform sequential
speech enhancement on a fixed-length input segment mi(τ) =
m(iS − S + τ)ωa(τ). Here, τ = 1, . . . ,K and i = 1, . . . , I
denote the time and segment indices, respectively, and ωa(τ)
is an analysis window function with length of K and shift of
S. The online Wave-U-net model is trained to estimate clean
speech s̃i(1), . . . , s̃i(K) = Gϕ(mi(1), . . . ,mi(K)) when the
mixture segment mi(τ) is provided. Here, Gϕ(·) is a nonlinear
function represented by a network with parameter ϕ. Similarly,
the estimated noise ñi(τ) is then obtained by subtracting s̃i(τ)
from the mixture.

The most common way to achieve low-latency applications
is to shorten the length of the input segment to reduce the
algorithmic delay and processing time, where the algorithmic
delay is defined as the waiting time to the first processing
that is determined by the window length K. However, the
available information for inference may also be reduced with
a shorter input, leading to a performance decrease. Therefore,
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the tradeoff between speech enhancement performance and
segment length must be taken into considered. To avoid the
speech enhancement performance decrease with short seg-
ments, a teacher-student learning method [19] is applied to
train the online Wave-U-Net model. Teacher-student learning
is a network training technique that transfers the knowledge
of a pre-trained teacher model to a student model, which
has been applied to various applications. It can be used, for
example, to transfer knowledge between different domains
for domain adaptation [22], [23], or to transfer knowledge
from a deep large network to a shallow small network for
model compression [24], or to transfer knowledge from a
bidirectional network to a unidirectional network for online
interference [25].

We consider to use the pre-trained offline model to apply
the teacher-student learning to train the online model, where
Fθ(·) is the teacher model and the parameter θ is optimized in
pre-training and fixed when training the online model. Gϕ(·)
is considered as the student model, where the parameter ϕ is
trained using the criterion that minimizes the following loss
function:

Lstu = L
′
+ βLdiff. (4)

Here, L′
is the MSE between the signals s̃i(τ) and ñi(τ)

estimated by the student model, and the windowed ground
truth signals si(τ) = s(iS−S+τ)ωa(τ) and ni(τ) = n(iS−
S + τ)ωa(τ), which is expressed as

L
′
= E

[
|s̃i(τ)− si(τ)|2 + |ñi(τ)− ni(τ)|2

]
. (5)

Ldiff is the MSE between the signals estimated by the student
model and those of the teacher model that are segmented by
the same analysis window ωa(τ). The second term is expressed
as

Ldiff = E
[
|s̃i(τ)− ŝi(τ)|2 + |ñi(τ)− n̂i(τ)|2

]
, (6)

where ŝi(τ) = ŝ(iS − S + τ)ωa(τ) and n̂i(τ) = n̂(iS − S +
τ)ωa(τ). β ≥ 0 is a parameter that weighs the importance of
the two terms in (4). Fig. 1 shows the teacher-student learning
of the online Wave-U-Net.

The student model has a similar network architecture with
the teacher model, where the only difference is the number of
DS and US blocks, which is defined as L′.

III. ONLINE-WAVE-U-NET WITH LOW-OVERLAP WINDOW

A. Window Processing in Online Wave-U-Net

To perform signal processing smoothly, the input mixture
is segmented by an analysis window ωa with a shift length
of S. The frames that have been enhanced by Wave-U-Net
are then multiplied by the synthesis window function ωs and
added together. This operation is referred to as overlap addition
(OLA). To guarantee that the waveform signals segmented
by the analysis window can be reconstructed to the original

signals, the synthesis window should be chosen to satisfy the
following equation, ∑

i

ωa(τ)ωs(τ) = 1. (7)

This is called the perfect reconstruction property.
Besides the above property, in frequency-domain speech

signal processing, window functions such as hanning window
and hamming window are generally chosen due to their
frequency responses, which are suitable for frequency analysis.
The online Wave-U-Net also uses the Hanning window as the
analysis window, as in the frequency-domain signal process-
ing. However, as we mentioned above, the window length of
Hanning window lower bounds the algorithmic latency, which
becomes a limitation to the low-latency applications.

B. Windowing with Low-Overlap Windows

The conventional analysis window for online Wave-U-Net
is the Hanning window, which is widely used as an analy-
sis window for frequency-domain speech signal processing.
However, using a Hanning window limits the promising ways
to reduce the algorithmic delay, which is equivalent to the
window length. Since Wave-U-Net applies separation in the
time domain, it is not necessary to use the Hanning win-
dow, which is commonly chosen because of its appropriate
frequency response. In this section, we propose using low-
overlap window as an alternative of the Hanning window in
online Wave-U-Net to reduce the algorithmic latency while
keeping the segment length.

Low-overlap window is a window function applied in the
real-time speech compression [20] and used for the modified
discrete cosine transform (MDCT). Fig. 2 shows an illustration
of the low-overlap window. The window function consists of
three parts, namely, the zero region, the overlap region, and
the constant region. All values in the zero region are 0, and all
values in the constant region are 1. The overlap region uses
the value of the following window function used in the Vorbis
codec [27]:

w(τ) = sin

[
π

2
sin2

(
π
(
τ + 1

2

)
2D

)]
, (8)

where D is the length of the overlap region. When the shift
length is half of the window length, the low-overlap window
satisfies the perfect reconstruction property. When the signal
is multiplied by this window function, the information in the
zero region disappears, so the zero region information does
not need to be prepared in advance and, as a result, the lower
bound of the algorithmic delay is the sample length obtained
by subtracting the zero region length from the window length.
For example, if 25% of the window length is set as the zero-
region, the algorithmic delay is reduced by 25% while the
frame lengths are the same. The shape of the low-overlap
window varies with the length of the zero region as shown in
Fig. 3. Since Wave-U-Net applies 1D CNN with zero padding
at both end and then downsamples, the samples closer to the
center of the frame are considered to have less artifacts due to
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Fig. 2. Low-overlap window.

Fig. 3. Change in the shape of the low-overlap window when the length of
the zero region is varied: case where the zero region is 25% of the window
length (left) and case where the zero region is 40% of the window length
(right).

zero padding. This motivates us to expect a small degradation
in speech enhancement performance when applying a low-
overlap window, which also has zero padding at both ends.
Furthermore, the overlap region in the low-overlap window
is small, which means the signal region affected by the next
frame is small. Therefore, shortening the overlap region can
loosen the upper bound of the processing time for the next
frame, which is advantageous for the real-time processing.

IV. EXPERIMENTS

In this section, assuming an in-vehicle communication ap-
plication, we evaluate the speech enhancement performance
and algorithmic delay of online Wave-U-Net using a Hanning
window (baseline) or the low-overlap window (proposed) as
the analysis window, by simulating an in-vehicle environment
with measured driving noise. The SDR, source-to-interferences
ratio (SIR), and sources-to-artifacts ratio (SAR) [28] are used
as evaluation metrics for speech enhancement performance.
We also use the perceptual evaluation of speech quality
(PESQ) [29] and short-time objective intelligibility (STOI)
[30] as the measures to evaluate the quality of the enhanced
speech signal.

A. Datasets

We excerpted utterances of clean speech spoken by 10
speakers from the CMU Arctic database [31], including 100
utterances for each speaker. six speakers (four males and
two females) labeled as {“aew”, “ahw”, “aup”, “axb”, “eey”,
“fem”} were used to generate the training and validation
datasets, and the other speakers (two males and two females)
labeled as {“awb”,“bdl”, “clb”, and “slt”} were used for the
test. All utterances were about 3 to 7 seconds long. We

excerpted noise signals from the JEIDA-NOISE database [32],
which were recorded in two different types of car that moved
at high speed. There was about 1-hour of data available for
each type. We used the noise recorded in one car as training
data and the other one for the test. The mixture signals for
training and validation were generated by adding the speech
utterances to randomly segmented noise signals, whose power
was controlled by multiplying by a randomly selected scaling
parameter in [0.2, 0.9], while the mixture signals for the test
were generated by setting the signal-to-noise ratio (SNR) to
{-3, 0, 3} dB. For each SNR, 50 test samples were generated.
The average SDR of the input mixture signals was 0.07 dB.
All the signals were sampled at 16 kHz.

B. Experimental Setup

For the online Wave-U-Net model, we used a model con-
sisting of 8 DS and US blocks, namely, L′ = 8. The filter size
in the 1D CNN layer was set to 15, 5, 15, and 1 for the
DS, US blocks, bottleneck, and output layers, respectively.
The number of channels in the lth DS and US blocks was
20l, and the numbers of channels in the bottleneck and output
layers were 20(L+1) and 1, respectively. The Adam optimizer
with a learning rate of 0.0001 was used for training, and the
batch size was set to 32. The trained offline model was used
as a teacher model to train a student model with an input
segment length of K = 1, 024. The input segment length of
the offline model used as the teacher model was set to 64, 000.
The weight parameter β for teacher-student learning was set to
1. For the analysis window, we used three types of low-overlap
window, in which the ratio of the zero-region length to the
total window length was set to {10, 25, 40}, and the Hanning
window as the baseline. For the synthesis window, we used
the optimal synthesis window corresponding to each analysis
window. The window length was set to 1, 024 samples, which
was the input segment length of the online Wave-U-Net. The
shift length of the window function were 512 samples, which
was half the window length.

C. Experimental Results

Table I shows the algorithmic delay and average SDR, SIR,
SAR, PESQ, and STOI of online Wave-U-Net when using
each window function. Among all the window functions, the
Hanning window used in the baseline system achieved the
highest speech quality in terms of SDR. The proposed method
achieved a high SDR of more than 14 dB in all cases. However,
we found that scores tended to decrease as the ratio of the zero
region used in the low-overlap window increased, indicating
a tradeoff between both the speech quality and separation
performance and the ratio of the zero region. Comparing the
results using the Hanning window and the low-overlap window
with a zero region length of 40% of the window length, which
had the lowest algorithmic delay in the experiments, we found
that the proposed method reduced the algorithmic delay of
online Wave-U-Net by 40% while keeping the SDR reduction
to 1.15 dB. Reverberation is generally considered to affect the
source separation performance, and is one of the important
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TABLE I
COMPARISON OF AVERAGE SDR [DB], SIR [DB], SAR [DB], PESQ, AND STOI WITH DIFFERENT WINDOW FUNCTIONS.

Analysis window ωa Ratio of zero area [%] Algorithmic delay [ms] SDR SIR SAR PESQ STOI

Low-overlap window
10 57.6 15.15 27.64 15.56 3.18 0.95
25 48.0 14.73 26.91 15.17 3.14 0.95
40 38.4 14.19 26.33 14.62 3.10 0.94

Hanning window 64.0 15.34 27.08 15.80 3.19 0.95

factors to be considered in the future. Since the reverberation
in a car is relatively small, the proposed system is expected
to work even in the presence of reverberation.

V. CONCLUSION

In this paper, we reconsidered the window processing in
the conventional online Wave-U-Net, and proposed the use
of a low-overlap window as an alternative to the Hanning
window to reduce the algorithmic delay. Through evaluation
experiments simulating the interior of a car being driven, it
was found that the proposed method reduced the algorithmic
delay of online Wave-U-Net by 40% while keeping the SDR
reduction to 1.15 dB.
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