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Abstract—We propose a low-latency speech enhancement
method using framewise finite impulse response (FIR) filters
based on time-frequency (T-F) mask. In many real-time audio
applications, such as hearing aids, low-latency processing is
highly required. T-F masking-based speech enhancement algo-
rithms improve speech intelligibility for hearing impaired people
in noisy environments, but an algorithmic delay due to frame
analysis occurs. To shorten this delay, we replace time-frequency
masking with framewise filtering in the time domain. The filters
are designed on the basis of the signal and noise spectra in each
frame, which are the same information used as that for designing
a Wiener-filter-based T-F mask. The latency is shortened by
designing a causal FIR filter and predicting the signal and noise
spectra only from the information in the past frames. Evaluation
experiments showed that causal framewise FIR filtering reduced
the delay with little degradation of the performance compared
with T-F masking.

I. INTRODUCTION

People with hearing loss suffer not only from an elevated
threshold for detecting sounds but also from understanding
speech, especially in noisy environments [1]. One of the ef-
fective approaches to address hearing loss is the use of hearing
aids. Hearing aids amplify the acoustic signals and send the
amplified signals into the ear canal. The signal is amplified
frequency-dependently and the amount of amplification at each
frequency region is appropriately determined by the degree of
the user’s hearing loss in each frequency region [2]–[4]. This
process significantly improves speech understanding in quiet
environments [5]. However, when background noise is present,
both the speech and the noise are amplified, and users with
cochlear hearing loss cannot understand speech as effectively
as prople with [1]. Therefore, nowadays, most commercially
available hearing aids have speech enhancement systems, and
there have been many studies on speech enhancement [6]–[9].

A deep neural network (DNN)-based speech enhancement
algorithm with time-frequency (T-F) masking in the short-
time Fourier transform (STFT) domain exhibited a significant
performance gain for speech intelligibility in noisy environ-
ments for people with hearing loss [10]–[12]. On the other
hand, sound processing in hearing aids requires low latency.
If the time difference between the input and output of the
hearing aid is large, discomfort due to the deviation between

the movement of the speaker’s lips and the voice and the
difficulty of vocalization of the user may occur [13]–[15]. One
study showed that a tolerable delay is approximately 6 ms at
1 kHz [13]. In the speech enhancement process using the T-
F mask described above, a delay corresponding to the frame
length is unavoidable owing to frame analysis.

Several methods for low-latency speech enhancement have
been proposed [16]–[19]. In [16], higher frequency resolution
was obtained together with low-delay processing by per-
forming analytical resynthesis by combining a long analysis
window and a short composition window. However, in this
algorithm, a delay corresponding to the synthesis window is
unavoidable. In [17] and [18], the time-frequency analysis and
synthesis were replaced by time-variable FIR filtering, but the
coefficients were estimated by autoregression and a DNN-
based technique was not used. In [19], speech enhancement
scheme implemented in the time domain, which separated
signals in an intermediate feature space generated by a trained
decoder, was proposed. This scheme replaced the STFT with
an encoder-decoder architecture. It outperformed ideal time-
frequency magnitude masks in a noncausal implementation
and also achieved a high performance in a causal implemen-
tation.

In this paper, we propose a low-latency DNN-based speech
enhancement scheme with framewise FIR filters. In our al-
gorithm, T-F masking is replaced with framewise FIR filter-
ing. By designing causal filters, a causal implementation is
realized. The coefficients of the filters are derived from the
power spectra of the input and estimated clean signals. The
power spectra are derived by T-F masking using the DNN. This
implementation is expected to show as high performance as
T-F mask-based speech enhancement algorithm. Additionally,
our proposed scheme can be used to compensate for the
hearing threshold evaluation because amplifying the signal at
a certain frequency is equivalent to setting a value larger than
1.0 for certain T-F components. Therefore, it is suitable for
real-time implementation in hearing aids.
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Fig. 1: Block diagram of conventional T-F masking algorithm.

II. CONVENTIONAL SPEECH ENHANCEMENT
ALGORITHMS

A. T-F Mask-Based Speech Enhancement in the Frequency
Domain

Let x(n) be a mixture of clean speech s(n) and a noise
signal v(n), where n is a discrete time index. Thus, x(n) =
s(n) + v(n). Let

X(τ, f) =

N
2 −1∑

m=−N2

w(a)(m)x(τNs +m)e
−j2πfm

N (1)

be the STFT representation of x(n), where τ and f denote the
indices of the time frame and frequency, respectively, w(a)(m)
denotes an analysis window function, N is the frame length,
which is assumed to be an even number, and Ns is the frame
shift.

In the T-F masking, the target signal is estimated by
applying T-F mask M(τ, f) to X(τ, f) in the STFT domain
such as

Ŝ(τ, f) =M(τ, f)X(τ, f). (2)

Then, the estimated clean speech ŝ(TF)(n) in the time domain
is obtained by the inverse discrete Fourier transform (IDFT)
and the overlap-add as

ŝ(TF)(n)=

∞∑
τ=−∞

w(s)(n−τNs)

 1

N

N
2∑

f=−N2 +1

Ŝ(τ, f)e
j2πf(n−τNs)

N

 ,
(3)

where w(s)(m) denotes a synthesis window function. For
perfect reconstruction,

∞∑
τ=−∞

w(s)(n− τNs)w(a)(n− τNs) = 1, (4)

must be satisfied.
Fig. 1 shows a block diagram of the T-F masking algorithm.

There are various methods of designing the T-F mask. We
can directly estimate the T-F mask or estimate the power
spectrogram of the clean speech |S(τ, f)|2 and design the T-F
mask as

M(τ, f) =
|S(τ, f)|2

|X(τ, f)|2
. (5)

For both methods, recent studies have found that a DNN works
very well for designing the T-F mask [10].

Although the T-F mask is effective for speech enhancement,
one problem is the latency. Fig. 2(a) shows the relationship
between the time indices of the estimated sample and the
observed samples used to estimate it. Because all the samples
of one frame are necessary for processing in the STFT domain,
one has to wait until the last sample of the observed signal in
a frame is acquired before estimating the first sample in the
frame. Thus, the delay of one frame is unavoidable in the T-F
masking.

B. Low-Latency Speech Enhancement Algorithms

As mentioned in Sec. I, various methods to shorten the
delay have been proposed such as using short synthesis
window [16], adaptive T-F analysis [17], [18], and encoder-
decoder architecture [19]. In this paper, we realize low-latency
speech enhancement by framewise FIR filtering. The filters
are designed by using DNN-based prediction of spectrogram
and T-F mask. It can be a causal implementation by changing
the number of noncausal components that remained when
calculating the coefficients of the filter. This scheme is based
on T-F masking in the STFT domain, thus, it is also suitable
for hearing aids that amplify the signal frequency-dependently.

III. TIME-DOMAIN IMPLEMENTATION OF T-F MASKING

A. Framewise FIR Filtering

To shorten the delay due to the frame analysis mentioned
in Sec. II-A, we propose the replacement of T-F masking with
time-varying FIR filtering in this work. We here consider a
framewise FIR filter hτ (k) (−N2 ≤ k ≤ N1) at the τ th frame,
where N1 and N2 denote positive integers or zero. When we
replace T-F masking and the IDFT with the FIR filtering, the
estimated clean speech ŝ(FIR)(n) is represented by

ŝ(FIR)(n) =

∞∑
τ=−∞

w(s)(n− τNs)·[
N1∑

m=−N2

w(a)(n− τNs −m)x(n− τNs −m)hτ (m)

]
.
(6)

For a perfect reconstruction, w(s) must satisfy
∞∑

τ=−∞
w(s)(n− τNs)w(a)(n− τNs) = 1. (7)

Fig. 3 shows a block diagram of the proposed algorithm.
If the optimum FIR filter hτ in terms of the mean squared

error (MSE) is calculated per frame, speech enhancement with
T-F masking is replaced with FIR filtering.

B. Wiener Filter

Here, we would like to review the derivation of the Wiener
filter [20] that minimizes MSE between the estimated and
clean speech signals. In this section, we focus on one frame
and derive an optimum FIR filter so that the frame index τ is
omitted.
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(a) T-F masking (conv.) (b) Noncausal filtering (prop.) (c) Causal filtering (prop.)

Fig. 2: Required observation for estimating each sample.

For integers n1 and n2, where n1 < n2, when the observed
signal x(n) = [x(n − N1), x(n − N1 + 1), · · · , x(n2)]T
is given, by defining FIR filter h = [h(−N2), h(−N2 +
1), · · · , h(N1)]

T , MSE is calculated using the following cost
function of h:

J(h) = E
[
|hTx(n)− s(n)|2

]
, (8)

where E [·] is the expectation operator. When h minimizes
J(h), it must satisfy

∂J(h)

∂h
= 2E[x(n)x(n)T ]h− 2E[x(n)s(n)] = 0. (9)

Let φxx(m) and φss(m) be the autocorrelations of x(n)
and s(n), respectively, corresponding to time lag m. Then, let
us define Φxx as an N ×N matrix whose (k,l)th element is
represented as

Φxx[k, l] = φxx(k − l) (10)

and φss as an N -dimensional vector whose kth element is
represented as

φss[k] = φss(k −N1 + 1). (11)

We define Φ(N1+N2+1)
xx as the top-left (N1+N2+1)×(N1+

N2 + 1) submatrix of Φxx and φ(N1+N2+1)
ss as the subvector

of φss with entries indexed by 1 to N1+N2+1. Assuming
that x(n) is a stationary signal and that x(n) and s(n) are
uncorrelated, we obtain

h̃ = (Φ(N1+N2+1)
xx )−1φ(N1+N2+1)

ss . (12)

Eqs. (10)-(12) indicate that the optimum FIR filter in terms of
MSE can be calculated from the autocorrelations of x(n) and
s(n).

C. Approximation of Autocorrelation Based on Frame Analy-
sis

As shown in Sec. III-B, the Wiener filter can be designed
from the autocorrelations of x(n) and s(n). To design the
Wiener filter in each frame, we here consider how to estimate
the autocorrelations of x(n) and s(n) in each frame. Accord-
ing to the Wiener–Khinchin theorem [20], an autocorrelation
function is equal to the inverse Fourier transform of power

spectrum density. Therefore, assume that we have the estimates
of the power spectra of s(n) and x(n) in each frame. We will
describe how to estimate them in relation to T-F masking in
the next section. In such a discrete and finite-length case, the
N -point autocorrelation function is obtained by the IDFT of
the N -point power spectrum. In this case, the autocorrelation
function becomes a periodic function with period N . As it is
also an even function, we have

φxx(m) = φxx(N −m) (m >
N

2
). (13)

Then, we consider approximating the autocorrelation functions
of s(n) and x(n) by using Eq. (13). This involves replacing
φss(m) and φxx(m) with φss(N − m) and φxx(N − m),
respectively, when m > N/2. Note that they are obtained
in an N -point frame. Let Ψxx be the matrix obtained by such
a replacement of Φxx. Defining Ψ (N1+N2+1)

xx as the top-left
(N1 + N2 + 1) × (N1 + N2 + 1) submatrix of Ψxx, in the
same way as defining Φ(N1+N2+1)

xx , Eq. (12) is rewritten as

h = (Ψ (N1+N2+1)
xx )−1(φ(N1+N2+1)

ss ). (14)

D. Wiener Filtering and T-F Masking

Let us consider the special case that N1 = N/2 − 1 and
N2 = N/2 and investigate the relationship between Wiener
filtering and T-F masking. Then, Ψxx, which is a circulant ma-
trix, is diagonalized by using discrete Fourier transform (DFT)
matrix of the same size. Defining F as an N -dimensional DFT
matrix whose (k, l)th element is e−i2π(k−1)(l−1)/N , we obtain

Ψxx
−1 = F−1 diag(pxx(n))F , (15)

φss = F
−1pss(n), (16)

where pxx(n) and pss(n) denote the power spectra of x(n)
and [s(n), s(n+1), · · · , s(n+N−1)], respectively, and diag(·)
denotes a diagonal matrix with the vector in brackets on its
main diagonal. Then, Eq. (14) is rewritten as

h = F−1pss(n)� pxx(n), (17)

where � denotes elementwise division. Eq. (17) indicates that
the Wiener filter is consistent with the IDFT of the ideal T-F
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Fig. 3: Block diagram of the proposed algorithm.

mask when N1 = N
2 − 1 and N2 = N

2 . Therefore, to obtain
the whole estimated signal in Eq. (6), framewise FIR filter h
is calculated using framewise autocorrelation Ψxx,τ and φss,τ
based on framewise power spectra pxx,τ and pss,τ .

Since the elements of hτ with positive and negative time
indices correspond to causal and noncausal components, re-
spectively, the algorithmic delay is equal to N2 samples.
The filter length is N1 + N2 + 1 and the frame length for
estimating power spectra is equal to circulation period N .
In the case of N1 = N

2 − 1 and N2 = N
2 , FIR filtering is

equivalent to conventional T-F masking and the algorithmic
delay corresponds to N

2 samples.

E. Design of Framewise FIR Filter

The causality of the FIR filter depends on N2. To make
it easier to compare the proposed algorithm with the T-F
masking algorithm, we set N1 = N

2 − 1 below. As mentioned
in Sec. III-C, noncausal FIR filter hnoncausal

τ that is equivalent
to T-F masking is derived as

hnoncausal
τ = (Ψ (N)

xx )−1 φ(N)
ss

= Ψxx
−1 φss,

(18)

where N1 = N
2 − 1 and N2 = N

2 and the delay corresponds
to N

2 samples. Fig. 2(b) shows the relationship between the
time indices of the observed and estimated signals in this case.
Causal filter hcausal

τ is calculated as

hcausal
τ = (Ψ

(N2 )
xx )−1 φ

(N2 )
ss , (19)

where N1 = N
2 − 1 and N2 = 0 and the delay is zero.

Additionally, if a slight delay of Nd samples is allowed, we
can set N1 = N

2 −1 and N2 = Nd, then we obtain a filter with
Nd noncausal components. We can set an appropriate Nd in
accordance with the tolerable delay or its speech enhancement
performance. Fig. 2(c) shows the relationship between the time
indices of the observed and estimated signals in this case.

IV. SPECTRUM PREDICTION FOR REALIZING
LOW-LATENCY PROCESSING

For the continuous processing of FIR filtering, the optimum
FIR filter at a certain frame should be determined at the start

of the frame. This means that in Eq. (6), at the start of the τ th
frame, in other words, at time n = τNs, power spectra pxx,τ
and pss,τ must be predicted.

We apply neural networks to predict them. We apply two
networks to estimate pxx,τ+N/Ns from past power spectra
pxx,τ , pxx,τ−1, pxx,τ−2, · · · and estimate pss,τ+N/Ns from
the same information as the former one. The former esti-
mation is equivalent to predicting a future power spectrum
from past power spectra. For the latter estimation, instead
of directly estimating pss,τ+N/Ns , we estimate mτ+N/Ns =
pss,τ+N/Ns�pxx,τ+N/Ns and have an estimate of pss,τ+N/Ns
by mτ+N/Ns � pxx,τ+N/Ns , where � denots Hadamard
product. The good performance of the power spectrogram
prediction has already been reported in [21].

V. EXPERIMENTAL EVALUATIONS

A. Dataset

We used clean speech from the Japanese Newspaper Article
Sentences corpus [22] and noise from the TUT dataset [23]. To
generate training data, 12 h of speech (50 male and 50 female
speakers) of the corpus was combined with noise recorded in
15 types of environment at signal-to-noise ratios (SNRs) of 0,
5, and 10 dB. Evaluation data were obtained from 20 min of
speech (five male and five female speakers different from the
speakers used for the training data) and combined with five
types of noise.

B. Setup

The sampling frequency was 16 kHz, the frame length
was 1024 samples, the frame shift length was 512 samples,
and a Hamming window was used for frame analysis as
shown in Table I. We used two neural networks to estimate
pxx,τ+N/Ns and mτ+N/Ns . For the neural networks, we
used the convolutional layers listed in Table II followed by
fully-connected layers. The networks were designed to be
causal and only require the information in the past frames
for prediction. For training, the learning rate was set to 0.01
and Adam [24] was used as the optimization algorithm with
decay rates β1 = 0.9 and β2 = 0.999. For training to estimate
pxx,τ+N/Ns , ReLU [25] was used as the activation function for
all layers. For training to estimate mτ+N/Ns , ReLU was used
as the activation function for all layers except for the output
layer, which used a sigmoid function. Each model was trained
for 500 epochs. To prevent the divergence of pxx,τ+N/Ns or
h in Eq. (17), each element of predicted pxx,τ+N/Ns was
bounded within the range from 0.01 to 2.0 times of each
element of pxx,τ . This process did not require the information
of future samples.

We compared the performance of conventional T-F masking
and the proposed FIR filtering algorithm. The proposed algo-
rithm had three conditions: causal (Nd = 0) and noncausal
(Nd = 16 and Nd = 512). Additionally, as a simple truncation
condition in which the noncausal component of hnoncausal

τ

calculated in Eq. (18) is truncated for comparison. To evaluate
the performance, the scale-invariant source-to-distortion ratio
(SI-SDR) [26] is employed.
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TABLE I: Experimental conditions.

Sampling frequency 16 kHz
Frame length 1024
Filter length 1024
Frame shift 512

Number of remaining noncausal components, Nd 0, 16, 512
Analysis window function Hamming

Synthesis window function (only for prop.) Hamming

TABLE II: Convolutional layer configuration. T width and F
width are the sizes of the filter in time (frames) and frequency
(bins), respectively. T and F dilations are the dilation factors
in time and frequency, respectively.

Filters T width F width T dilation F dilation
32 1 7 1 1
32 5 5 1 1
32 5 5 2 1
32 5 5 4 1
32 5 5 8 1
32 5 5 16 1
8 1 1 1 1

TABLE III: Speech enhancement performance.

Method Noncausal
components Design SI-SDRi [dB]

T-F masking (conv.) - MMSE 8.17
Noncausal filtering (prop.) 512 (32 ms) MMSE 8.18
Noncausal filtering (prop.) 16 (1 ms) MMSE 5.78

Causal filtering (prop.) 0 (0 ms) MMSE 5.74
Causal filtering - Truncation -7.52

TABLE IV: Speech enhancement performance of each predic-
tion by causal filtering.

pxx,τ+N/Ns mτ+N/Ns SI-SDRi [dB]
Ground truth Predicted 6.12

Predicted Ground truth 9.53
Predicted Predicted 5.74

C. Results

Table III presents the SI-SDR improvement (SI-SDRi) for
each condition. Compared with the conventional T-F masking
algorithm with a delay of 64 ms, the degradation of the
performance of the proposed algorithm with the causal filter
was 2.43 dB. This degradation is considered to be caused by
the introduction of the circular model in Sec. III-C.

To further investigate the performance, we compared the
cross-correlations of the estimated signals and the target signal.
Even though the causal implementation is realized in the
proposed method, a group delay of the filter may cause a delay.
Thus, we investigate the cross-correlations. Figs. 4 and Fig. 5,
respectively, show the normalized cross-correlations between
the target signal and the signals estimated by T-F masking and
causal filtering. In both T-F masking and causal filtering, the
peak appears at a lag of zero. This means that no delay occurs
even in the case of causal filtering.

Fig. 4: Cross-correlation of processed signal by T-F masking
and target signal.

Fig. 5: Cross-correlation of processed signal by causal filtering
and target signal.

To obtain better performance in the future, we investigate
the speech enhancement performance of the proposed methods
with the ground truth of pxx,τ+N/Ns and mτ+N/Ns . Table IV
shows the performance obtained when one of them is replaced
with the ground truth data. It indicates that the performance
could be improved by improving the accuracy of predicting
both pxx,τ+N/Ns and mτ+N/Ns . For example, both of them
are trained independently in this study, but they may be
combined and trained as multitask learning.

VI. CONCLUSIONS

We propose a low-latency speech enhancement method
using framewise FIR filters based on T-F mask. By designing
the filters to be causal, the implementation can be causal.
The experiments showed that the proposed algorithms reduced
the algorithmic delay from 64 to 0 ms with degradation of
only 2.43 dB in SI-SDR, compared with the conventional T-F
masking algorithm. Future tasks are to further investigate the
tradeoff between the delay and the performance, combinate
the speech enhancement and the compensation of the hearing
threshold elevation together, reduce the computational load
by element selection [27], and achieve better performance.
performance.
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