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Abstract— Deep learning based approaches have achieved 

great success in mono-channel and multi-channel speech 

separation, but limited studies have focused on the binaural 

output, not even to mention the preservation of spatial cues. 

Existing speech separation networks preserve spatial cues by 

improving the signal-to-noise ratio (SNR) of the separated 

speech, regardless of the different requirements between 

reducing noise and preserving spatial cues. This work proposed 

a framework to optimize spatial cue preservation for binaural 

speech separation. It consisted of a relative transfer function 

(RTF) corrector that modified the distorted RTF of the 

separated speech into a correct one, and an RTF estimator to 

extract the correct RTF. A new RTF estimator was designed to 

obtain an accurate RTF. The framework was evaluated on a 

binaural version of WSJ0-2mix dataset, which was spatialized by 

anechoic head-related impulse responses. Experimental results 

showed that the proposed framework significantly reduced the  

interaural time difference (ITD) and interaural level difference 

(ILD) errors of the existing binaural separation networks, but 

did not notably sacrifice the SNR of the separated speech signals. 

I. INTRODUCTION 

Speech communication in real life is frequently contaminated 

by various types of noises and interferences, and human 

listeners can focus on a target speech and extract it from 

undesired sources. Especially when the target source and 

undesired sources are spatially separated, the human auditory 

system can easily separate them utilizing spatial cues like 

interaural time differences (ITDs) and interaural level 

differences (ILDs) [1-2]. Hence, preserving spatial cues can 

provide extra advantages in intelligibility improvement for 

binaural speech separation algorithms [2-4], and offer 

localization information of sound sources for listeners. 

The spatial cue preservation for conventional speech 

separation or enhancement methods has been well studied 

[e.g., 5-9]. One simple way is to apply an identical real-value 

mask to both left and right channels [e.g., 5-6], so that the 

ITD and ILD of the original speech signals will not be 

modified, but the separation performance is sacrificed. A 

more efficient way is to apply beamformers with constraints 

on spatial cues. The speech-distortion-weighted multi-channel 

Wiener filter (SDW-MWF) has been extended to binaural 

output in [7], where a cost function of interaural transfer 

functions (ITFs) is added to the total cost function as a 

penalty term to preserve spatial cues. Binaural minimum 

variance distortionless response (BMVDR) beamformer [8] 

achieves preservation of spatial cues by introducing a linear 

constraint of the relative transfer function (RTF) into 

MVDR’s cost function. Relaxed binaural linearly constrained 

minimum variance (LCMV) beamformer [9] replaces the 

linear equality constraints in BMVDR with inequality 

constraints into cost function, which ignores some spatial cues 

that are inaudible to humans and further improves its noise 

reduction ability. These methods adopt a similar strategy of 

preserving spatial cues, i.e., adding penalty terms or 

constraints related to the distortion of spatial cues into the 

beamformer’s cost function. As a frequently used metric for 

quantifying spatial cues, ITF is defined as the ratio of the 

acoustic transfer functions related to the source position and 

the two ears [10], and it is equivalent to RTF for a binaural 

setup. 

In recent years, the development of deep learning 

algorithms has dramatically improved the performance of 

speech separation systems. Given a noisy mixture in the short-

time Fourier transform (STFT) domain, the clean speech 

signal can be separated by applying time-frequency (T-F) 

masks which are estimated by a deep neural network [11]. 

Besides, deep learning based speech separation can also work 

in time domain, where the mixture waveform is directly 

modeled. A typical example is Conv-TasNet [12], which 

replaces STFT and inverse STFT (iSTFT) by trainable 

encoder and decoder for feature extraction, and achieves 

comparable performance to the T-F domain systems. 

Except for the mono-channel approaches, the multi-

channel separation systems based on deep learning have been 

also investigated. Some studies attempted to extend mono-

channel separation systems into multi-channel separation 

systems [e.g., 13-14] by introducing inter-channel features, 

while others combined neural networks with beamformers 

[e.g., 15-16]. However, the preservation of spatial cues for 

binaural output has been rarely studied. A multiple-input-

multiple-output (MIMO) extension of Conv-TasNet was 

proposed in [17] which exploited parallel encoders to extract 

inter-channel spatial features, and the ITD and ILD of the 

unmixed speech signals were preserved. Based on the gated 

recurrent neural network [18], the later presented MIMO self-

attentive gated RNN (SAGRNN) [19] surpasses the MIMO-
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TasNet on both separation performance and spatial cue 

preservation by incorporating self-attention mechanism and 

dense connectivity. Both of them use signal-to-noise ratio 

(SNR) as their training objective, since the ITD and ILD 

errors are already involved in SNR. It cannot be denied that 

improving SNR will largely benefit spatial cue preservation, 

but improving SNR and spatial cue preservation  are two 

fundamentally different tasks. Examples can be found in [8], 

where perfect preservation of spatial cues does not require a 

perfect speech separation. If one aims to preserve spatial cues, 

optimizing the system directly on spatial cues rather than 

SNR could be a more efficient way. 

In this study, a framework is proposed for binaural speech 

separation to further improve the accuracy of the preserved 

spatial cues. The spatial cues of the separated speech signals 

are directly controlled by an RTF corrector, and an RTF 

estimator is designed to ensure the accuracy of the spatial 

cues. The rest of this paper is organized as follows. Section II 

describes the speech separation system in details. Section III 

introduces the experimental setup. The experimental results 

and discussion are presented in Section IV, and Section V 

concludes this paper. 

II. SYSTEM DESCRIPTION 

A. Problem Definition 

Assuming that a time-domain binaural mixture signal 

consisting of 𝐶  sources is formulated as 𝐲[𝑛] = ∑ 𝐱𝑖[n]𝐶
𝑖=1 , 

the sound propagation from each source to ears is usually 

modeled by head-related impulse response (HRIR) [20], as: 

 

{
𝑥L,𝑖[𝑛] = 𝑠𝑖[𝑛] ⊛ ℎL,𝑖[𝑛]

𝑥R,𝑖[𝑛] = 𝑠𝑖[𝑛] ⊛ ℎR,𝑖[𝑛]
    𝑖 = 1, … , 𝐶, (1) 

 

where 𝑠𝑖[𝑛]  is the monaural signal of source 𝑖 , 𝑥L,𝑖[𝑛]and 

𝑥R,𝑖[𝑛] represent, respectively, the left and right channels of 

the received speech signal 𝐱𝑖[n], and ℎL,𝑖[𝑛] and ℎR,𝑖[𝑛] are 

the HRIRs of the corresponding sources. The symbol ⊛ 

represents the convolution operator. According to the 

narrowband approximation [21], the convolution in time 

domain can be approximate by the multiplication in STFT 

domain as: 

 

𝐗𝑖(𝑡, 𝑓) = 𝑆𝑖(𝑡, 𝑓)𝐀𝑖(𝑓) , (2) 

 

where 𝐗𝑖(𝑡, 𝑓) and  𝑆𝑖(𝑡, 𝑓) are the STFTs of 𝐱𝑖[𝑛] and 𝑠𝑖[𝑛], 
respectively, and 𝐀𝑖(𝑓)  denotes the head-related transfer 

function (HRTF). In the remainder of the paper, the variables 

𝑓 and 𝑡 will be omitted for the sake of brevity. The binaural 

cues can be extracted through the relative transfer function 

(RTF) which is defined as the ratio of the left and right 

channels, as:  

 

RTF𝑖
in =

𝑋L,𝑖

𝑋R,𝑖

=
𝐴L,𝑖

𝐴R,𝑖

. (3) 

 

RTF is chosen as the representation of spatial cues for two 

reasons: i) It is suitable for modeling directional sounds [22]; 

and ii) ITD and ILD can be directly derived from RTF’s phase 

and magnitude, respectively [7]. Thus, the preservation of 

spatial cues can be achieved by maintaining the RTF of the 

input sources as: 

RTF𝑖
out =

�̂�L,𝑖

�̂�R,𝑖

= RTF𝑖
in =

𝐴L,𝑖

𝐴R,𝑖
, (4) 

 

where �̂�L,𝑖  and �̂�R,𝑖  represent the left and right channels of 

estimated speech source �̂�𝑖, respectively. 

B. Overview of the Framework 

The proposed framework consists of 3 modules: binaural 

speech separator, the RTF estimator, and the RTF corrector. 

The speech mixture is initially separated by an arbitrary 

binaural separation neural network with binaural output. 

Multiple-input single-output (MISO) separation systems are 

also alternative, which can estimate the left and right channels 

separately. The separated speech of source 𝑖 is denoted as �̂�𝑖 , 

and its STFT form is �̂�𝑖 . Then the RTF estimator extracts 

accurate RTF �̂�𝑖 from the separated speech and provides it to 

the RTF corrector. Finally, the distorted RTF of the separated 

speech is modified by the RTF corrector in the STFT domain, 

according to the estimated accurate RTF. The corrected 

speech is denoted as �̃�𝑖 , and it is transformed into time-

domain as the final result �̃�𝑖. An illustration of the framework 

is displayed in Fig. 1. 

C. RTF Estimation  

Given an estimated speech from a speech separation 

network, a commonly used estimation of RTF is the 

eigenvector decomposition of covariance matrix [23]: 

 

�̂�𝑖 =
1

𝑇
∑ �̂�𝑖 �̂�𝑖

H

𝑡
 

�̂�𝑖 = 𝒫{�̂�𝑖} 

�̂�𝑖 =
�̂�L,𝑖

�̂�R,𝑖

, (5) 

 

Fig. 1   Flowchart of the proposed spatial cue preservation framework. 
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where �̂�𝑖 denotes the estimated covariance matrix of signal, 𝑇 

denotes the total number of frames, 𝒫{∙} extracts the principal 

eigenvector, and �̂�𝑖 denotes the estimated RTF. 

Considering that the errors of speech separation and 

narrowband approximation could affect the estimation 

accuracy of RTF, here a neural network based estimator is 

designed to overcome these errors. The architecture of the 

estimator is illustrated in Fig. 2. Similar to [13] and [17], 

parallel encoders are used for feature extraction. The 

separated speech signals �̂�L,𝑖, �̂�R,𝑖 and speech mixtures 𝑦L, 𝑦R 

are encoded by a shared encoder. The encoded inputs are 

concatenated and fed to a DPRNN [24] mask estimator. Four 

masks in total are estimated and applied to encoded inputs. 

The masked signals that correspond to the same channel are 

summed and decoded, producing a binaural time-domain 

signal �̃�𝑖 = [�̃�L,𝑖 �̃�R,𝑖]T. The function of the separator is not 

to separate different sources, but to separate the RTF-

preserved components from the RTF-distorted components. 

Thus, the output signal will be notably different from the 

reference speech signal, but with accurate RTFs. Let 𝑍L,𝑖 and 

 𝑍R,𝑖  represent the STFTs of �̃�L,𝑖  and �̃�R,𝑖 , respectively, the 

estimation of RTF �̂�𝑖 is summarized by: 

 

�̂�𝑖 =

∑ 𝑊�̃�,𝑖 ×
𝑍L,𝑖

𝑍R,𝑖
𝑡

∑ 𝑊�̃�,𝑖𝑡
, 𝑊�̃�,𝑖 =  ‖𝑍L,𝑖‖2

2
+ ‖𝑍R,𝑖‖2

2
. (6)

 

 

The RTF estimation error is used as the training objective, 

which is defined as the average error across frequencies 

weighted by speech magnitude:  

  

ΔRTF = 10 log10 (
∑  

|𝑟𝑖 − �̂�𝑖|
|𝑟𝑖|

𝑊𝑋,𝑖𝑓

∑  𝑊𝑋,𝑖𝑓
) ,

𝑊𝑋,𝑖 =  ∑ ‖𝑋L,𝑖‖2

2

𝑡
+ ∑ ‖𝑋R,𝑖‖2

2

𝑡
. (7)

 

 

The motivation for using magnitude weights is that: RTF 

components at different frequencies will not contribute 

equally to the RTF correction result. Generally, the RTF 

errors at T-F bins with large magnitude will bring severe 

performance degradation to the correction results, while the 

influence will be much smaller at T-F bins with small 

magnitude. The magnitude weights are expected to guide the 

network to focus on frequencies that are critical to the RTF 

correction.  

D. RTF Correction 

To ensure that the separated speech signals maintain the 

RTFs of the original unmixed speech sources, the outputs of 

the separation neural network are modified by solving the 

following optimization problem:  

 

�̃�𝑖 = arg min
�̃�𝑖

 ‖�̃�𝑖 − �̂�𝑖‖2

2
    s. t.  

�̃�L,𝑖

�̃�R,𝑖

= RTF𝑖
in. (8) 

 

However, the actual RTFs are not available in the real 

situation. RTF𝑖
in has to be replaced by the estimated one, i.e., 

�̂�𝑖. The closed-form solution of (8) is easy to obtain as: 

 

�̃�𝑖 = 𝐝𝑖(𝐝𝑖
H𝐝𝑖)

−1
𝐝𝑖

H�̂�𝑖, 𝐝𝑖 = [
�̂�𝑖

1
] . (9) 

 

The purpose of this correction is to enforce the RTF of the 

input source 𝐗𝑖  and output source �̃�𝑖 to be identical, 

meanwhile the spectra differences between �̃�𝑖  and �̂�𝑖 are 

minimized to prevent the correction from introducing too 

much new noise. From the perspective of geometrical 

explanation, the process of RTF correction is to project the 

input estimate to the nearest point on the subspace of the 

RTF-preserved estimates, as illustrated in Fig. 3. If the 

estimated RTF is accurate, the projected point could be closer 

to the speech reference. As a result, the separated speech 

might have a chance to obtain a higher SNR after RTF 

correction.  

 

Fig. 2  The architecture of the proposed RTF estimation network. 
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III. EXPERIMENT 

A. Datasets 

A spatialized and anechoic version of WSJ0-2mix dataset 

[25] was created for training and evaluation of the proposed 

speech processing system. The mono-channel utterances in 

WJS0-2mix were convolved by randomly selected HRIR 

from CIPIC database [26]. The CIPIC HRTF database 

contains HRIR of 45 subjects, covering 25 azimuths (from 

−80°  to −80° ) and 50 elevations (from −90°  to −270° ). 

Data from 36 subjects were used for training and evaluation, 

and data from 9 unseen subjects were used for testing. All 

audios were downsampled to 8 kHz. 

B. Network Configurations 

The non-causal MIMO-TasNet was implemented as the 

binaural speech separation module, with the same 

configuration reported in [17]. For the RTF estimation, both 

the proposed network and eigenvector decomposition were 

evaluated. Linear encoder and decoder with 2 ms filter length 

were used in the proposed RTF estimator, and the number of 

filters was 64. The DPRNN block was implemented with 128 

bottleneck channels and 128 hidden channels. The analysis 

window for STFT was a square-root-Hann window, with 

frame length 512 samples, overlap 128 samples, and an FFT 

size of 512 samples. 

C. Evaluation 

The accuracy of preserving spatial cues was evaluated in 

the same way as [19], which applied a binaural sound 

localization algorithm [27] to compute the ITD and ILD of 

binaural speech signals. The ITD for each T-F unit was firstly 

plotted as a histogram, and then one ITD value was 

summarized for the whole utterance, by taking the center 

value of the highest bin. Only the frequency bands below 1.5 

kHz were taken into count when evaluating ITD, due to its 

dominant role in localization at low frequencies. Following a 

similar procedure to evaluate ITD, ILD is separately evaluated 

at 3 different filter-banks with their center frequencies at 

roughly 2.07, 3.08, and 3.75 kHz, which was due to the 

frequency-dependence of ILD. The ITD error (ΔITD) and ILD 

error (ΔILD) were respectively calculated as the difference of 

the summarized ITD and ILD values between the estimated 

speech signals and clean references. The separation 

performance of the system was evaluated by SNR 

improvement (ΔSNR). 

IV. RESULTS AND DISCUSSION 

 The evaluation results are presented in Table I. The 

performance of MIMO SAGRNN in the noise-free condition 

is also presented as a baseline. The RTF correction was 

evaluated with providing three different RTFs: i) an oracle 

RTF which was calculated from clean speech, named as 

“oracle”; ii) an estimated one from eigenvector decomposition, 

named as “eig.”; and iii) an estimated one from proposed RTF 

estimator, named as “proposed”. The speech signals separated 

by MIMO-TasNet have already preserved some of the spatial 

cues, but the ΔITD and ΔILD were further reduced after RTF 

correction. The proposed corrector and estimator reduced the 

ΔITD of MIMO-TasNet from 19.64 μs to 8.52 μs, and the 

ΔILDs in three frequency bands from 0.73, 0.66 and 0.97 dB 

to 0.29, 0.32 and 0.46 dB, respectively. The accuracy of 

spatial cue preservation was even better than MIMO 

SAGRNN, with ΔITD of 14.95 μs and ΔILD of 0.53, 0.45, 

and 0.70 dB. These results indicate the effectiveness of the 

RTF corrector in preserving spatial cues. The proposed RTF 

estimation neural network reduced ΔRTF  by 5 dB over 

eigenvector decomposition, and its ΔITD  and ΔILD  were 

quite close to those of the oracle RTF, which shows the 

superior accuracy of the proposed RTF estimator. 

Although the RTF corrector was not designed to reduce 

separation errors, ΔSNR still slightly increased by about 1.3 

Fig. 3  The geometric illustration of RTF correction with examples of correct 

RTF and wrong RTF. 

TABLE I 

 SEPARATION PERFORMANCE AND SPATIAL CUE PRESERVATION OF DIFFERENT METHODS 

Method ΔRTF (dB) ΔSNR (dB) ΔITD (μs) 
ΔILD (dB) 

2.07 kHz 3.08 kHz 3.75 kHz 

MIMO-TasNet − 21.02 19.64 0.73 0.66 0.97 

MIMO SAGRNN  − 26.88 14.95 0.53 0.45 0.70 

Oracle − 22.36 7.77 0.24 0.22 0.37 

Eig. -15.22 21.99 14.58 0.52 0.54 0.83 

Proposed -20.21 22.31 8.52 0.29 0.32 0.46 

Masked mix. only -19.66 22.30 8.72 0.31 0.32 0.47 

Masked sep. only -18.42 22.28 9.72 0.32 0.34 0.46 
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dB after correction. This confirms the deduction in Section II. 

Denoting the ΔSNR of the speech signal before correction as 

ΔSNR1 , and the ΔSNR of speech signal after correction as 

ΔSNR2, the ΔSNR changes (i.e., ΔSNR2 − ΔSNR1) caused by 

RTF correction are presented in Fig. 4. The scatter plot shows 

that the ΔSNR changes are consistently larger than 0 dB, with 

almost no exception.  

Notably, the proposed system achieved better ITD and 

ILD preservation than MIMO SAGRNN at a disadvantage of 

SNR. It is another example proving that good preservation of 

spatial cues does not entirely rely on speech separation 

performance. 

Two variants of the proposed RTF estimator were also 

evaluated and presented in in Table I. One variant only used 

masked speech mixture to generate RTF estimation, named as 

“masked mix. only”, and the other only used masked 

separated speech to generate RTF estimation, named as 

“masked sep. only”. The input features still contained both 

mixture and separated speech as the vanilla estimator. Both of 

the two variants outperformed the MIMO-TasNet baseline 

and obtained better RTF estimation than eigenvector 

decomposition, with ΔRTF  of -19.66 dB and -18.42 dB, 

respectively. This indicates that DPRNN can separate spatial 

cue components from either speech mixture or separated 

speech. Comparing the two variants, the “masked mixture 

only” condition yielded a better performance than the 

“masked separated only” condition, which means that the 

masked speech mixture contributes more to the estimation 

performance in the masking procedure. This deviation might 

result from the noise-free setup of the experiment design, in 

which case the unmodified spatial information can be 

extracted from segments of mixtures that are dominant by a 

single source. If the mixture is corrupted by an ambient noise, 

the separated speech might contribute more to the RTF 

estimation. 

 

 

V. CONCLUSIONS 

In this paper, the problem of spatial cue preservation was 

investigated in the context of deep learning based speech 

separation approaches. A framework of preserving spatial 

cues was proposed, which used a neural estimator to estimate 

RTFs, and a linear corrector to recover the distorted RTFs of 

the separated speech signals. Experimental results showed 

that the performance of spatial cue preservation of the existing 

binaural separation approaches could be further improved by 

the proposed framework. The ITD and ILD errors were 

significantly reduced after RTF correction, without any 

significant loss of SNR. The framework does not depend on 

any specific binaural separation network, so it is suitable to be 

adopted as an addon of speech separation system for spatial 

cue preservation. Future works could include adapting this 

framework to noisy and reverberate environments and 

developing a real-time implementation. 
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