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Abstract—For speech-related applications in Internet of things
environments, identifying effective methods to handle interfer-
ence noises and compress the amount of data in transmissions is
essential for achieving high-quality services. In this paper, we
propose a novel multi-input multi-output speech compression
and enhancement (MIMO-SCE) system based on a convolu-
tional denoising autoencoder (CDAE) model to simultaneously
improve speech quality and reduce the dimension of transmission
data. Compared with conventional single-channel and multi-
input single-output systems, MIMO systems can be employed for
applications where multiple acoustic signals need to be handled.
We investigated two CDAE models, fully convolutional network
(FCN) and Sinc FCN, as the core models in MIMO systems.
The experimental results confirm that the proposed MIMO-SCE
framework effectively improves speech quality and intelligibility,
and reduces the amount of recording data to one-seventh for
transmission.

I. INTRODUCTION

Multichannel speech enhancement (MCSE) and speech
compression techniques benefit several real-time speech com-
munication in an Internet of things system [1], [2], [3], [4],
[5]. Conventional MCSE systems with a multiple-input single-
output (MISO) configuration suppress environmental noises
from multiple noisy inputs to provide decent sound quality and
intelligibility on the single-channel output side [6], [7], [8], [9].
Generally speaking, most MCSE algorithms were derived on
beam-forming-based approaches [10], [11], [12], [13], wherein
either the spatial diversity of received signals or the maximum
signal-to-noise ratio (SNR) criterion were exploited to perform
a linear filter function to preserve the desired signal [14],
[15]. Several attempts further combine deep learning (DL)
with conventional beam-forming-based MCSE to provide a
robust transfer function and to promote the system capability
on dealing with non-stationary noises environments [16], [17],
[18], [19], [20], [21], [22], [23]. In addition to beam-forming-
based approaches, some researches enhanced noisy recordings
directly through the DL models. For example, the work in [24]
used a denoising auto-encoder (DAE) model to suppress noise
in the time domain to preserve the speech signal in an specified
spatial direction. Our previous work [25] utilized a fully
convolutional neural network (FCN) and Sinc FCN (SFCN) on
MCSE to achieve decent speech quality and intelligibility in
both subjective and objective tests. Notably, an Sinc layer [26]
used in SFCN provides more meaningful filters to decompose
the model inputs for the following FCN model.

However, apart from the improved sound quality, multi-
channel inputs also increase bandwidth, power consumption,
and hardware costs for signal transmission and storage. An
effective acoustic signal compression method is required to
reduce the amount of captured data [27]. For acoustic signal
compression, speech coding (SC) approaches are applied to
remove the statistical redundancies or perceptual irrelevancies
of input audio signals [28], [29], [30], [31], [32], [33], [34],
[35], [36]. Traditional SC approaches, such as sub-band coding
[37] and code-excited linear prediction [38], are derived by
considering temporal properties to compress an single-channel
speech signal. On the other hand, multichannel SC approaches,
such as spatial audio coding [28], [29], [39], and modified
discrete cosine transform [40], [40], [41], are applied to encode
input signals by considering both coherence and statistical
difference across channels. Generally, some level of distor-
tions can be observed in coded and restored speech signals
and slightly degrade the speech quality and intelligibility
accordingly. Recently, DL techniques have been introduced
in signal compression algorithms to perform SC systems [42].
In [43] and [44], an utterance was first analyzed using deep
neural networks to extract phonological and prosodic speech
representations to build novel speech codecs. In [45] and [46],
speech spectra are encoded by a deep auto-encoder that is
trained with identical input and output signals. The associated
codecs are then derived from output nodes of the middle
hidden layer. Meanwhile, DL models have been used as post-
filters to enhance coded speech [47], [48], and have been
shown to yield decent speech quality.

In this study, we propose a multi-input multi-output speech
compression and enhancement (MIMO-SCE) framework. No-
tably, the multiple enhanced outputs can further be used for
other applications, such as sound-based indoor positioning [49]
and multi-channel ASR system [50]. The proposed enhancing-
compressing framework is based on a convolutional DAE
(CDAE) [25] model, comprising encoder and decoder parts.
During training, the CDAE is trained to process noisy multi-
channel speech signals in order to generate enhanced signals.
Thereafter, the encoder and decoder of the trained CDAE are
placed at the edge and server, respectively. During testing, the
encoder part encodes noisy multichannel speech inputs into
bottleneck features with reduced dimensions. The encoded
bottleneck features are then transmitted to the server and
processed by the decoder to recover the enhanced multichannel
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Fig. 1. Architecture of MISO-FCN. CB and OB in the figure represent
convolutional blocks and the output blocks, respectively.

speech signals. Two CDAE models were implemented for
the MIMO-SCE framework: an FCN-based (termed MIMO-
SCE(F)) and an SFCN-based (termed MIMO-SCE(S)). Exper-
imental results show that MIMO-SCE(F) and MIMO-SCE(S)
can effectively reduce multichannel acoustic data by a factor
of seven while improving speech quality and intelligibility.

The remainder of this paper is organized as follows: A
review of related works is presented in Section II, and the
concepts and architectures of the proposed MIMO-SCE(F) and
MIMO-SCE(S) models are discussed in Section III. Section
IV-A presents the experimental setup and results. Finally, the
conclusions of the study are described in Section V.

II. RELATED WORKS

In this section, we first review MISO SE systems. Subse-
quently, we review two CDAE models: FCN and SFCN.

A. MISO SE system

For the multichannel noisy recording waveforms Y =
[y1,y2, · · · ,yN ], where N denotes the number of channels,
the MISO SE system aims to generate an enhanced speech
signal x̂, where x̂ = fθ(Y); θ denotes the model parameters
and is estimated by minimizing the difference between the
generated speech x̂ and the clean reference. During the test,
for a given noisy multichannel input, the MISO SE generates
an enhanced single-channel output.

B. Two CDAE Models: FCN and SFCN

The CDAE model consists of an encoder and a decoder.
In this study, two CDAE models were implemented. The first
one is FCN, which comprises convolutional blocks (CBs), as
shown in Fig. 1. Each CB consists of three components: con-
volution layer (Conv), batch normalization, and LeakyReLU.
The filter number and filter length used in the convolution layer
are fn and fl, respectively. A stack of CBs is concatenated for
feature extraction and transformation. Finally, an output block
(OB) consisted of a convolution layer and a tanh activation
function is placed in the last part of the FCN. In an OB, the
filter length of the convolution layer is defined as the output
dimension c; for the MISO SE system, c is equal to 1.

In our previous work [25], we confirmed that SFCN can
yield better MISO SE performance. The architecture of the
SFCN is depicted in Fig. 2. The primary difference between

Fig. 2. Architecture of MISO-SFCN

Fig. 3. Architecture of MIMO-SCE

the FCN and SFCN models is that SFCN adopts the Sinc
convolution (SincConv) layer as the first CB. SincConv was
designed and trained to provide various filter banks; thus, it
can obtain band-pass information even for a limited amount
and restricted diversity of training data. In addition, as Sinc-
Conv contains fewer parameters, SFCN can be trained more
efficiently.

III. PROPOSED MIMO SPEECH COMPRESSION AND
ENHANCEMENT FRAMEWORK

In this section, we introduce the architecture of the proposed
MIMO-SCE framework. Two CDAE models are used as
the core units to build MIMO-SCE(F) and MIMO-SCE(S)
systems. The goal of MIMO-SCE is to determine a function
that transforms Y to multichannel clean speech signals, X.

A. System architecture

The proposed MIMO-SCE system is presented in Fig.
3. The system is comprised of encoder and decoder parts.
During training, for the noisy multichannel input Y =
[y1,y2, · · · ,yN ], the MIMO system aims to generate en-
hanced speech signals X̂, where X̂ = fθ(Y); θ denotes
the model parameters and is estimated by minimizing the
difference of generated speech X̂ = [x̂1, x̂2, · · · , x̂N ]. Using
the clean multichannel reference: X = [x1,x2, · · · ,xN ],
we train the model parameter θ to minimize the difference
between X̂ and X:

θ̂ = argmin
θ

D(fθ(Y),X), (1)
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where D(·) denotes the cost function, which is defined in Eq.
(2).

D(fθ(Y),X) =

N∑
i=1

(x̂i − xi)
2 . (2)

After training, we place the encoder and decoder parts of
the trained model at the edge and server sides, respectively.
During the test, for the noisy multichannel input, the MIMO
system first encodes the data into a latent representation with
the reduced dimension. The encoded representation vectors are
then transmitted to the server side and finally reconstructed to
multichannel outputs based on the decoder. Because the latent
representations (instead of original multichannel inputs) are
transmitted, the data size is reduced; thus, online transmission
bandwidth costs can be reduced.

B. MIMO-SCE(F) and MIMO-SCE(S)

The proposed MIMO-SCE(F) and MIMO-SCE(S) process
speech signals in the time domain. The main advantage
of time-domain speech signal processing is that the phase
information can be more accurately preserved, as compared
with spectral-domain processing.

For MIMO-SCE(F) and MIMO-SCE(S), we designed a bot-
tleneck architecture, where a middle layer has few dimensions,
that is used to compress multichannel inputs termed as the
compression block (CPB). By assigning the filter number of
the CPB to Cnum, the compression rate is Rcomp = N/Cnum,
which is derived from the channel number before and after the
encoder. The inputs of MIMO-SCE(F) and MIMO-SCE(S) are
the same as those used in the MISO systems, as shown in Figs.
1 and 2, respectively, and the outputs of the two systems are
multichannel signals, as shown in Fig. 3.

The MIMO-SCE(F) encoder consists of a feature inductor
(FE) and CPB, where the FE is combined using four-layer
CBs. All CBs have identical architectures, including Conv
with filter number fn = 30, filter length fl = 55, Batch
Normalization, and LeakyRelu. The CPB has a filter length
of fl = 55, filter number Cnum = 1, Batch Normaliza-
tion, and LeakyRelu. Subsequently, the decoder consists of
a decompression block (DCPB) and a reconstruction block
(RB). The DCPB also has four-layer CBs that decompress the
transmission signal. The CB set is the same as the encoder.
The RB has a Conv layer with a filter length fl = 55, filter
number c = N , and tanh activation function to rebuild the
multichannel speech data, where N = 7 in this paper.

The encoder and decoder design of MIMO-SCE(S) is sim-
ilar to that of MIMO-SCE(F). However, in MIMO-SCE(S),
SincConv is added as the encoder’s first CB to extract ad-
ditional speech features, as shown in Fig.2. The rest part of
MIMO-SCE(S) is identical to MIMO-SCE(F).

For MIMO-SCE(F) and MIMO-SCE(S), we use the cost
function in Eq. (2) to estimate the model parameters. On the
other hand, instead of using all seven-recording signals, the
one-channel encoder output is transmitted to the far-end server
terminal. Therefore, the compression rates of both systems are
7/1.

Fig. 4. Recording settings for the experiments. The speaker is placed at the
center (source) and surrounded by seven microphones (I to VII). Microphones
I to VI are placed 1 m away from the source, whereas microphone VII is
placed at 1.5 m and behind microphone I.

IV. EXPERIMENTS

In this section, we introduce the experimental setup and
results of the proposed MIMO-SCE framework. The com-
pression ratio (Rcomp) was maintained at 7, and the speech
quality (measured via the perceptual evaluation of speech
quality, PESQ [51]) and intelligibility (measured via short-
time objective intelligibility, STOI [52], [53]) of the enhanced
multichannel outputs were measured and reported as the
evaluation results. The PESQ score ranges from 0.5 to 4.5, and
the STOI score typically ranges from 0 to 1. Higher PESQ and
STOI scores indicate better speech quality and intelligibility,
respectively.

A. Experimental Setup

The speech data used in this study were recorded using
the setup shown in Fig. 4. The loudspeaker (head and torso
simulator) was placed at the center (Fig. 4) and surrounded
by seven microphones. Six microphones—–I, II, III, IV, V,
and VI—–were placed at a distance of 1 m from the source,
whereas microphone VII was placed 1.5 meters away from
the source. All seven microphones were of the same model
(Sanlux HMT-11). The transcript material is the Taiwan Man-
darin Hearing in Noise Test dataset (TMHINT) [54], which
is a phonetically balanced corpus consisting of 320 sentences
and ten Chinese characters in each sentence. All utterances
were pronounced by a native Mandarin male speaker for
recording at 16 kHz sampling rate with seven microphones
in the clean environment. We further split 320 utterances into
two parts: 250 utterances for training and 70 utterances for
testing. The training utterances from the seven microphones
were contaminated with eight noise types: pink, fan, babble,
gun, alarm bell, cough, buccaneer, and engine, at signal-to-
noise ratios (SNRs) of −10, −5, 0, 5 and 10 dBs. Therefore,
there are 35, 000 = 250 × 7 × 5 × 4 noisy-clean utterance
pairs in the training set. The testing utterances from the seven
microphones were contaminated with another four noise types,
namely sound of a water cooler, street noise, car noise, and
the bell of a fire truck, at SNRs of −10, −5, 0, 5 and 10 dB,
and thus provide 9, 800 = 70×7×5×4 noisy testing samples.
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Waveform Spectrogram

(a)

(b)

(c)

(d)

Fig. 5. Spectrogram and waveforms of (a) clean, (b) noisy (under street
noise at 10 dB SNR), and (c) MIMO-SCE(S) with a compression ratio of 1,
and (d) MIMO-SCE(S) with a compression ratio of 7. All utterances in the
figure were selected from the microphone III.

B. Experimental results

The qualitative and quantitative results of the proposed
MIMO-SCE(F) and MIMO-SCE(S) are presented in this sec-
tion. Those results of the testing noisy that denoted as “Noisy”
in the following sections are also listed as the baseline.

1) Qualitative spectrogram comparison: We first demon-
strate the effects of the compression ratio (Rcomp) on the
proposed MIMO-SCE(S), as depicted in Fig. 5, in terms
of the spectrum plots and the associated waveforms of a
sample utterance recorded from the microphone III. Fig. 5
(a) and (b) present the clean and noisy utterances, respectively,
whereas (c) and (d) depict the utterances derived from MIMO-
SCE(S) with compression ratios of 1 and 7, respectively. On
comparing Figs. 5 (c) and (d) with (b), it is evident that the
noise components in the noisy spectrum and waveform were
effectively suppressed. Furthermore, the harmonic structures
of the spectrum and the envelope of waveforms in Figs. 5
(c) and (d) are preserved by MIMO-SCE(S), compared with
those in Fig. 5 (a). These results indicate the effectiveness
of the proposed model in enhancing speech subjected to
noise environments and a high compression ratio. Therefore,
the MIMO-SCE models with a compression ratio of 7 are
used and evaluated, as described in the following section.
On the other hand, we also noted that the quality of high-
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Fig. 6. Averaged (a) PESQ and (b) STOI scores of Noisy, MIMO-SCE(F),
and MIMO-SCE(S) in −10, −5, 0, 5 and 10 SNRs.

frequency components in Figs. 5 (c) and (d) are degraded
when comparing those with the clean spectra in Fig. (a). One
possible inference is highly distorted frequency-band signals
remaining the hard task for FCN model.

2) Quantitative objective evaluation results: Table I lists
the average PESQ and STOI results over all seven output
channels and noise conditions for each of Noisy, MIMO-
SCE(S) and MIMO-SCE(F). In addition, for each output
channel, the associated clean signal in that channel was applied
as a reference for performing PESQ and STOI metrics. From
the table, we noted that MIMO-SCE(F) and MIMO-SCE(S)
outperform Noisy in terms of the PESQ and STOI scores.
MIMO-SCE(F) yields higher PESQ and STOI scores than
MIMO-SCE(S), confirming the advantages of incorporating
the SincConv layer in the enhancement system.

To further analyze the results listed in Table I, we present the
detailed PESQ and STOI scores of Noisy, MIMO-SCE(F), and
MIMO-SCE(S) at specific SNRs (−10, −5, 0, 5 and 10 dB) in
Fig. 6. First, from Fig. 6 (a), we note that both MIMO-SCE(F)
and MIMO-SCE(S) improve PESQ scores over Noisy, and
more significant improvements were observed at lower SNR
levels. Meanwhile, MIMO-SCE(F) marginally outperforms
MIMO-SCE(S) consistently over different SNR levels. From
Fig. 6 (b), we note that MIMO-SCE(F) and MIMO-SCE(S)
improve the STOI scores over Noisy at low SNR conditions
(−5 to 0 dB); however, both MIMO-SCE(F) and MIMO-
SCE(S) do not provide further enhancements over noisy under
cleaner conditions (at 5 and 10 dB SNRs). A possible inference
for those reduced STOI scores is the distorted speech resulting
from the data compression function of the proposed models.

TABLE I
AVERAGE PESQ AND STOI SCORES OF NOISY, MIMO-SCE (F), AND

MIMO-SCE(S)

Noisy MIMO-SCE(F) MIMO-SCE(S)

PESQ 1.825 2.890 2.927
STOI 0.678 0.750 0.801
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V. CONCLUSIONS

In this paper, we propose a novel MIMO-SCE system to
perform data compression for the simultaneous transmission
and enhancement of speech signals. We investigated two
CDAE models—–FCN and SFCN–—as core models in the
proposed system, with a short-hand notation MIMO-SCE(F)
and MIMO-SCE(S), respectively. The experimental results
show that, under a high compression ratio of 7, the proposed
MIMO-SCE(F) and MIMO-SCE(S) models improve speech
quality and reproducibility under various SNR conditions.
To the best of our knowledge, this is the first study to
simultaneously perform data compression and SE based on
DL-based CDAE models, in an MIMO scenario. In the future,
we plan to explore MIMO systems for the integration of other
heterogeneous data, such as visual and textual data, to further
improve data compression and SE efficacy. More realistic
microphone configurations are also going to be investigated
for the proposed MIMO-SCE approach.
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