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Abstract— Scoring sleep data is a subjective and time-

consuming. It takes more than one hour to score a whole night’s 

PSG data. The automatic sleep staging method is needed to 

reduce clinical manpower. In this paper, an attention-based 

ensemble convolution neural network approach for sleep stage 

classification with merged spectrogram was proposed. All-night 

sleep physiological signals from 19 healthy individuals and 90 

insomnia patients were used. First, the all-night 

polysomnography (PSG) signals including electroencephalogram 

(EEG), electrooculogram (EOG), and electromyogram (EMG) 

were segmented into 30-sec segments. Subsequently, each 

segment was transformed into spectrograms by continuous 

wavelet transform and a simple merged processing was applied 

to generate the merged spectrograms with different viewpoint. 

Next, the three merged spectrogram groups with different 

viewpoint were utilized as an input of our proposed CNN with 

self-attention, named merged spectrogram Net (MS-Net). The 

three trained MS-Net models were used to form an ensemble 

MS-Net. The experimental results showed that the accuracy, 

kappa coefficient, and F1 score of the proposed method were 

89.83%, 84.82%, and 85.09%, respectively. The results proved 

that the proposed deep learning approach, ensemble MS-Net, 

had highly accuracy for sleep PSG spectrogram classification.1 

I. INTRODUCTION 

Sleep plays an important part in the consolidation of 

memories, learning, physical development, emotion 

regulation, and quality of life [1]. However, humans may 

suffer from various sleep disorders such as insomnia, which is 

the most common specific sleep disorder. In the general 

population, the prevalence rate of insomnia is 33% 

approximately [2]. To diagnose sleep disorder, all-night 

polysomnography (PSG) recordings are usually taken from 

the subjects, and well-trained staffs scored each epoch (i.e., 

30-s data) into wakefulness (Wake), non-rapid eye movement 

(Non-REM) or rapid eye movement (REM) sleep stage 

according to the American Academy of Sleep Medicine 

(AASM) [3] rules.  

                                                           
1 This work was supported by Ministry of Science and Technology of Taiwan 

under Grants, MOST 109-2221-E-005 -080 -MY3 and 110-2634-F-006 -010. 
It was carried out at the AI Biomedical Research Center, Tainan, Taiwan. 

However, diagnosing sleep disorders is time consuming 

and has a considerable workload [4]. From the patient 

perspective, they need to wait at least two months to record 

sleep signals at the sleep center. From the clinical staff 

perspective, the scoring process is time intensive, because the 

length of time to record sleep data is approximately 6 to 8 

hours, and they have to manually analyze patients’ sleep data 

for sleep scoring and annotating sleep-related events, which is 

a process of at least one hour. 

In recent years, the deep learning has also been successfully 

applied to various types of physiological signals. Several 

automatic or aided sleep stage classification based on deep 

learning have been proposed, which used the convolution 

neural networks (CNNs), recurrent neural networks (RNNs) 

or combined CNN and RNN. The raw signals or their 

spectrograms can be as input of the CNN or the RNN, and 

they can automatically extract the pertaining features [5-14].  

Thus, we aim to propose a method which used the merged 

spectrograms with different viewpoint to train three CNNs for 

sleep stage classification and the three CNN models were 

used to form an ensemble model for higher accuracy. In this 

paper, the 109 PSG recordings which are from 19 healthy 

individuals and 90 insomnia patients are used. First, the 

continuous wavelet transform was used to convert each 30-s 

EEG, EOG, and EMG segment into three spectrograms. The 

three spectrograms were merged as a single spectrogram 

(called original group) and used it to generate the horizontal-

reflection spectrogram group and vertical-reflection 

spectrogram group, respectively. The three merged 

spectrogram groups with different viewpoint were utilized as 

an input of our proposed CNN with self-attention, named 

merged spectrogram Net (MS-Net). The three trained MS-Net 

models were used to form an ensemble MS-Net. Finally, the 

sleep architecture was classified by the ensemble MS-Net.  

The main contributions of this work can be described as 

follows: (1) a simple merged and multi-viewpoint processing 

was proposed for build the ensemble CNN model. (2) The 

MS-Net with self-attention was proposed which with high 

accuracy for sleep PSG spectrogram classification. (3) The 

ensemble CNN that making decision by using a neural 

network to optimize the weights of each classifier in the 
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ensemble model. (4) The results were improved by the 

ensemble CNN method with increases the accuracy, kappa 

coefficient, and F1 score by 6.48%, 9.81%, and 8.55%, 

respectively.  

II. MATERIALS AND METHODS 

A. Materials 

The subjects included 19 healthy individuals (sleep 

efficiency ≥ 85%) and 90 patients with insomnia (sleep 

efficiency < 85%). The patients with insomnia lasting more 

than three days per week for one month experienced 

drowsiness, sleepiness, irritable mood in daytime affecting 

learning and working. The insomnia patients have SE < 85%, 

sleep onset time > 15 min. and/or wake after sleep onset time 

>30 min. The 9 subjects from the healthy group and the 45 

subjects from the insomnia group were used to generate the 

system, and the other 10 subjects from the healthy group and 

the other 45 subjects from the insomnia group were used for 

testing. 

These measurements were approved by the internal review 

board of National Cheng Kung University. Subjects were 

recruited from the public by online advertisements and 

announcements on notice boards at National Cheng Kung 

University. Participants must avoid any drug/medication and 

limit caffeine use. The all-night physiological signals were 

measured in the sleep laboratory at the cognitive institute of 

National Cheng Kung University. The physiological signals 

included two electroencephalogram (EEG) channels (C3-A2 

and C4-A1), one electrooculogram (EOG) channels (ROC-

LOC), and a chin electromyogram (EMG) channel. The 

sampling rate was 256 Hz with 16-bit resolution. All 109 PSG 

sleep recordings were visually scored by two sleep specialists 

using the AASM guidelines with a 30-s interval (named an 

epoch). The epoch belonging movement (Mov) was extra 

annotated at the procedure of the manual scoring, because we 

want to make our model had an ability to distinguish Mov 

epoch. Table 1 shows the percentage of sleep stage of the 

healthy individuals and insomnia patients, respectively. 

 

B. The proposed sleep stage classification 

Fig. 1 shows the flowchart of the ensemble CNN model for 

sleep Staging with merged spectrogram. The process 

comprises two main steps: (1) Preprocessing and (2) 

Classification. 

 

1) Preprocessing 

The preprocessing process comprises three steps: (1) 

Segmented into 30-s epochs: An all-night PSG signal from 

EEG (C3-A2), EOG, and EMG was segmented into 30-s 

epochs with non-overlap. (2) Continuous wavelet transform 

(CWT): Each 30-s epoch was converted into three 

spectrograms by the CWT. Then, the three spectrograms were 

merged as a single spectrogram. (3) generate the horizontal-

reflection spectrogram group and vertical-reflection 

spectrogram group from the original group.  

 
Table 1 

Percentage of sleep stage of the healthy individuals and insomnia patients 

Subject 
Total 

epoch 

Wake 

(%) 

N1  

(%) 

N2  

(%) 

N3  

(%) 

REM 

(%) 

Mov  

(%) 

Healthy 18,026 2.25 3.18 48.98 15.87 19.32 10.40 

Insomnia 73,609 16.25 6.97 39.66 12.64 14.62 9.86 

Total 91,635 13.49 6.22 40.52 13.27 15.54 10.96 

 

The CWT has been successfully apply to other biomedical 

signal analysis [15, 16]. The CWT formula is shown in (1). 

1
( , )= ( )

t b
W a b x t dt

aa






 
 
   (1) 

where x(t) is a 30-s signal; ψ(t) is a mother wavelet; a is a 

dilation parameter; b is a translation parameter. The 

spectrogram image size was set 224×224×3, since the input 

sizes of the proposed CNN. Fig. 2 shows the raw 30-s EEG 

and corresponding spectrogram at the five different sleep 

stages. The X-axis and Y-axis in the spectrogram represented 

time (sec) and frequency (Hz), respectively. The scale of the 

Y-axis is logarithmic. The range in time is 0-30 sec; the range 

in frequency is 0.11-113.11 Hz. The warm color regions in 

the spectrogram are represented which frequency band has 

more power. The characteristics of each sleep stage are 

clearly observed.  

 
(a)

 

(b)
 

(c)

 

(d)

 

(e)

 
Fig. 2. Raw 30-s EOG signal and corresponding spectrograms at the five 
different sleep stages. (a) Wake, (b) N1, (c) N2, (d) N3, and (e) REM, 

respectively. 
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2) Merged spectrograms with different viewpoint 
Figs. 3, 4 (a) and 4 (b) represent the processing of the 

original merged spectrogram, horizontal-reflection merged 

spectrogram, and vertical-reflection merged spectrogram, 

respectively. In the processing of original merged 

spectrogram, the widths of EEG, EOG, EMG spectrograms 

were compressed to one-third of the original and merged as a 

single spectrogram along the horizontal direction. 

 

Fig. 3. The processing of the original merged spectrogram. 

In the processing of horizontal-reflection merged 

spectrogram (see Fig. 4(a)), the EEG, EOG, EMG 

spectrograms were reflected along the horizontal direction 

firstly. Then, the remaining step was same as the original 

merged processing. The vertical-reflection merged 

spectrogram was obtained easily as shown in Fig. 4(b). 

 

Fig. 4. The processing of (a) the horizontal-reflection merged and (b) vertical-
reflection merged spectrogram. 

 
Fig. 1. Flowchart of the proposed ensemble CNN for sleep Staging with merged spectrogram. 
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3) Merged spectrogram Net (MS-Net) 
Convolutional neural network (CNN) [17] is a class of deep 

neural network that is widely used for computer vision or 

analyzing visual imagery. The main advantage of CNN is that 

it automatically detects the important features without any 

human supervision or feature engineering. Moreover, CNNs 

have already been successfully applied to various types of 

physiological signals, including EEG recordings [7, 8]. CNN 

is a very good feature extractor for a completely new task or 

problem. The useful features or attributes were could 

extracted from an already trained CNN and tune the weights 

of the trained CNN a bit for the specific task by the new 

training data from new task or problem. 

In this paper, we proposed a CNN model, named merged 

spectrogram Net (MS-Net) for merged spectrogram 

classification. The illustration of the proposed MS-Net as 

shown in Fig. 5. The MS-Net was mainly composed of 

multiple Residual-GC block. The illustration of the Residual-

GC block was shown in Fig. 5(a), which is composed of two 

modules: residual learning [18] and global context (GC) block 

[19]. The residual learning and GC module were constructed 

with reference to ResNet [18] and global context networks 

[20], respectively. The advantage of GC block is that it has a 

self-attention mechanism which enable us to get a better 

feature maps.Fig. 5(b) represents the overall structure of the 

MS-Net model. The MS-Net contains 8 Residual-GC blocks. 

 

4) Ensemble CNN method 

When inputting a merged spectrogram to the MS-Net, it 

will output the confidence scores (probability values) that the 

spectrogram belongs to each sleep stage. Moreover, the sleep 

stage of the spectrogram will be determined by the highest 

confidence score. The flowchart of the proposed ensemble 

CNN method as shown in Fig. 6. The three trained MS-Net 

CNNs were used to form an ensemble model. The main 

strategy of the ensemble method is used a total of 18 (3*6) 

confidence scores from three trained CNNs as the input of the 

ensemble method and a fully connected neural network with a 

hidden layer (18 hidden neurons) was adopted to obtain the 

six ensemble confidence scores that corresponding to six 

sleep stages. In addition, the movement epochs from 

classification results were smoothing according to the AASM 

rules. If the Mov was adjacent to the Wake, Mov was revised 

to the Wake; If the Mov was adjacent to the non-Wake, Mov 

was revised to the same stages as its subsequent epochs. 

 

C. Performance evaluation 

We have used different metrics to evaluate the performance 

of the proposed method including, overall accuracy (Acc), 

sensitivity (Se), and F1 score. These metrics are defined as 

 
Fig. 6. The flowchart of the proposed ensemble CNN method. 

Residual-GC block

Feature Maps
(W*H*C)

3*3 Conv

addition Layer
(W*H*C)

Layer Normalization

relu layer

Outputs
(W*H*C)

Input:
Spectrograms
(224*224*3)

7*7 Conv (32 filters)

3*3 AvgPooling

Residual-GC block
(64 filters) *3

Residual-GC block
(128 filters) *3

Residual-GC block
(192 filters) *2

Global Average 
Pooling

Dense (128 units)

Dense (64 units)

Outputs

MS-Net

1*1 Conv
(W*H*1)

(a)

(b)

Residual learning

GC module

Batch Normalization

3*3 Conv

Batch Normalization

sigmoid

Scale

1*1 Conv
(W*H*filter size/16)

1*1 Conv
(W*H*filter size)

addition Layer
(W*H*C)

3*3 MaxPooling

addition Layer

 
Fig. 5. Illustration of the proposed MS-Net. (a) illustrates the Residual-GC 
block, which is composed of two modules: residual learning and global 

context block. (b) represents the overall structure of the MS-Net model. 

The MS-Net contains 8 Residual-GC blocks. 
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follows: 

TP TN
Acc

TP TN FP FN




  
 (2) 

TP
Se

TP FN



 (3) 

TP
PPV

TP FP



 (4) 

1

2 ( )Se PPV
F

Se PPV

 



 (5) 

where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. In the two-class matrix, 

they indicate correctly classified, correctly rejected, 

incorrectly classified, and incorrectly rejected, respectively. 

Sensitivity (Se) represents that the proportion of actual 

positives that are correctly classified. Positive predictive value 

(PPV) represents that the proportion of predictive positives 

that are correctly classified. In addition, Cohen’s kappa 

coefficient [21] was also calculated for each subject to 

evaluate the agreement between clinical staff and the 

proposed method. Cohen’s kappa coefficient is a statistical 

measure of interrater agreement among two or more raters. 

III. RESULTS 

A. Experiment setups 

There are two main steps in our experiment: step (1) train 

and evaluate the proposed MS-Net model; step (2) the three 

trained MS-Net models to form the ensemble CNN model. 

Then, the ensemble CNN model was evaluated after the fully 

connected neural network that in the ensemble CNN model 

was trained. Half of the subjects (N=54) where from healthy 

and insomnia group were respectively and randomly selected 

for training single MS-Net and the ensemble CNN, and the 

others (N=55) were used to test single MS-Net and the 

ensemble CNN performance. Adaptive moment estimation 

(Adam) optimizer were used to train all models. The learning 

rate which initial value is 0.001 was piecewise dropped based 

on a multiplicative factor after each training epoch. The 

computer program that we used to develop and evaluate the 

proposed method is MATLAB (version: 2021a including deep 

learning toolbox). 

 

B. The performance of MS-Net and ensemble MS-Net 

The evaluation metrices of the classification result between 

experts were shown as Table 2. The accuracy, kappa, F1 score, 

between the three single MS-Net were very close, and their 

average accuracy, kappa, F1 score were 83.28%, 75.01%, and 

76.42%, respectively. The accuracy of single MS-Net was 

over the average agreement between the experts (82.6%) [22]. 

This shows that the basic classifier of our ensemble method 

already has good accuracy. The best accuracy, kappa, F1 

score, and Se of each five stage were the ensemble CNN 

method by using the merged spectrograms with different 

viewpoint. The accuracy, kappa coefficient, and F1 score of 

the proposed method were 89.83%, 84.82%, and 85.09%, 

respectively. The accuracy, kappa, and F1 score improved by 

an average of 6.55%, 9%, and 8.38% after using ensemble 

CNN, respectively. It was proved that the ensemble CNN can 

make the results closer expert scoring.  

 
Table 2 

Evaluation metrices representing the classification result between experts and 

Meraged (original, horizontal, and vertical) and ensemble CNN 

 
Acc. Kappa 

F1 
score 

Se 
Wake 

Se 
N1 

Se 
N2 

Se 
N3 

Se 
REM 

Merged 

(Original) 

83.35 75.01 76.54 87.37 40.71 89.45 76.95 83.90 

Merged 
(Horizontal) 

83.31 75.01 76.46 87.37 40.30 89.39 77.79 83.45 

Merged  

(Vertical) 

83.18 75.01 76.25 87.00 40.57 89.47 76.30 83.72 

Merged+ 

Ensemble 
89.83 84.82 85.09 91.40 54.01 94.88 80.23 93.26 

 

Table 3 shows the literatures related to the automatic 

sleep scoring in recent years and the proposed ensemble CNN 

method. These literatures used machine learning and deep 

learning to classify sleep stages. Pankaj et. al. [23] used 

SqueezeNet to automatically learn the features from 

spectrogram and classify. Akara et. al. [10] used the network 

combined CNN and long short-term memory to learn features 

from raw data. In addition to Ref. [24, 25] and our proposed 

method, these automatic sleep scoring systems were 

developed by using healthy individuals in Table 3. However, 

the sleep data recorded from the patients with sleep disorder is 

even more often seen in clinic. The automatic sleep scoring 

system should be developed by the patients’ dataset such as 

SHHS, instead of only healthy individual. Wu et. al. [26] has 

a high accuracy, but the validation method is not subject-

independent. Therefore, our proposed method was higher 

robustness and generality than Wu et. al. [26]. In addition, we 

will also use a larger number of clinical public data sets such 

as PhysioNet Challenge 2018 [27] to verify the effectiveness 

of our proposed method. 

IV. CONCLUSIONS 

In this paper, an automatic sleep scoring that is classified 

sleep stages using ensemble CNN was developed. First, the 

merged spectrograms were generated by 30-s PSG signals 

using the CWT. Next, the proposed MS-Net were trained 

using 54 sleep data recorded from healthy individuals and 

insomnia patients for sleep stage classification task. The three 

trained MS-Net models were used to form an ensemble model 

with using a neural network to optimize the weights of each 

classifier in the ensemble model. The accuracy, kappa 

coefficient, and F1 score of the proposed method were 

89.83%, 84.82%, and 85.09%, respectively. The limitation of 

this study is the proposed method only evaluated by healthy 

individuals and insomnia patients. The patients with other 

sleep disorder such as sleep apnea or PLM should need 

further evaluation in the future.  
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Table 3 
Literatures related to the automatic sleep scoring in recent years and the proposed method 

Ref. dataset No. of subjects Method Validation Acc (%) Kappa  F1 (%) 
Sensitivity (%) 

Wake N1 N2 N3 REM 

[10] Sleep-EDF 20 (H a) raw EEG + CNN-LSTM 20-fold 82.0 -- -- 83.4 50.1 81.7 94.2 83.9 

[28] Sleep-EDF 20 (H) raw EEG + 1dCNN-OCRNN 
hold-out 

(9:1) 
82.4 -- -- 85.2 21.6 82.9 87.5 91.4 

[29] unpublish 265 (D b) raw EEG, EOG, and EMG + 1dCNN 
hold-out 
(35:8:57) 

83.6 0.77 78.1 86.8 46.7 90.6 39.2 91.7 

[30] MASS 147 (H) 
hand-crafted features + raw EEG, 

EOG, and EMG + Bi-LSTM 
LOSO 87.8 0.82 81.8 89.1 43.5 92.7 83.4 93.9 

[26] Sleep-EDF 99 (H) hand-crafted features + SVM 10-fold 93.1 0.84 73.9 99.1 37.26 88.3 82.9 75.6 

[24] SHHS 
5728  

(H and D) 
DWT + LDA 

hold-out 

(5:2:3) 
87.2 0.81 84.0 90.4 34.4 87.1 84.5 84.22 

[12] Sleep-EDF 22 (H) raw EEG + CNN-LSTM 20-fold 84.3 -- -- 90.6 54.5 82.7 88.9 88.7 

[23] Sleep-EDF 42 (H) 
time-frequency spectrogram + 

SqueezeNet 

hold-out 

(7:1:2) 
84.7 -- -- 91.8 34.7 91.7 78.2 88.9 

[2] unpublish 20 (H) 
MSE and AR coefficients of EEG + 

LDA 
hold-out 

(1:1) 
88.1 0.81 -- 86.3 28.5 88.1 86.7 97.6 

[31] unpublish 16 (H) 
MSE and AR coefficients of EOG + 

LDA 

hold-out 

(1:1) 
84.3 0.77 -- 83.8 42.9 83.0 81.3 94.1 

[25] unpublish 32 (H and D) 

raw EEG and EMG, hand-crafted 

features + genetic fuzzy inference 

system 

2-fold 86.4 0.81 -- 86.8 35.2 89.6 88.6 88.2 

Ours 

(ensemble 

CNN) 

unpublish 109 (H and D) 
time-frequency spectrogram + 

ensamble CNN 
hold-out 

1:1 
89.8 0.85 85.1 93.2 52.9 94.8 80.9 93.5 

aH= healthy individuals; bD= patients with sleep disorder. 
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