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Abstract—Epilepsy is a disorder of the nervous system that
can affect people of any age group. With roughly 50 million
people worldwide diagnosed with the disorder, it is one of the
most common neurological disorders. The electroencephalogram
(EEG) is an indispensable tool for diagnosis of epileptic seizures
in an ideal case, as brain waves from an epileptic patient would
present distinct abnormalities. However, in real world situations
there will often be biological and electrical noise interference,
as well as the issue of a multi-channel signal, which introduce
a great challenge for seizure detection and classification. For
this study, the Temple University Hospital (TUH) EEG Seizure
Corpus dataset was used. This paper proposes a novel channel
selection method which isolates different frequency ranges within
five channels. This is based upon the frequencies at which normal
brain waveforms exhibit. A one second window was selected, with
a 0.5 s overlap. Wavelet signal denoising was performed using
Daubechies-4 wavelet decomposition. Thresholding was applied
using minimax soft thresholding criteria. Filter banking was used
to localise frequency ranges from five specific channels. Statistical
features were then derived from the outputs. After performing
bagged trees classification using 500 learners, a test accuracy of
0.82 was achieved.

I. INTRODUCTION

Electroencephalogram (EEG) is widely used in different
clinical settings, with the purpose of seizure detection and
classification being the most abundant [16]. EEGs are used
to measure electrical activities by means of placing many
electrodes either on the exterior of the brain using a brain cap
or via intracranial electrodes [22]. Epilepsy is characterised
by recurrent, unpredictable and unprovoked seizures. People
with epilepsy are known to have an increased risk of injury,
unemployment, death, depression, anxiety, and other psychi-
atric and psychological issues [10]. Seizures are propagated
when many neurons are synchronously excited, causing a
wave of electrical activity in the brain [34]. There are many
different orientations that can be used for the placement of
the electrodes. However, the most common method is the
International 10-20 System as shown in Figure 1. This is where
21 electrodes are evenly spaced across the scalp, with distances
between each electrode equal to 10% or 20% of the total
distance between nasion (front) and inion (back) [17]. This
mapping is required because seizures can occur in a localised

area (focal seizures) or more generally (generalised seizures).
Focal seizures affect only one hemisphere of the brain and
can be distinguished by whether or not awareness is retained.
An example of a focal seizure is focal impaired aware seizure
(FIAS), previously known as complex-partial seizure (CPSZ).
This seizure type has a direct impact on a patient’s ability
to respond to any stimulus. The awareness of the patient is
not retained during this period and the patient may appear
disoriented or react abnormally [15]. Generalised seizures
affect the majority, if not all, of the brain and can occur without
provocation [27]. It is also typical for patients experiencing
generalised seizures to lose consciousness or have uncontrolled
muscle spasms. Tonic-clonic seizures (TCSZ) are the most
well-known type of generalised seizure, in which the patient
gets stiff and then jerks [15]. It is worth noting that many
people experience only one type of seizure. However, some
people may have various types of seizures. Additionally, the
type of seizures that a patient has may alter over time [34].

The general practice for diagnosis of seizures involves
a board certified EEG interpreter to examine patients and
undertake manual EEG signal analysis for diagnosis, which is
expensive and time consuming. This can also be exceedingly
tiresome and place a significant physical and mental strain on
physicians, as EEG recordings typically span several hours,
with many patients being watched overnight or even for several
days [28]. A detailed history from the patient and observers
is required for an appropriate clinical diagnosis, which can be
negatively affected by inaccurate and inadequate patient and
witness histories. Recent research has revealed that even ex-
perienced neurologists have difficulty distinguishing between
focal and generalised epilepsy [23]. According to the World
Health Organisation (WHO), if provided with appropriate
diagnosis and medication, up to 70% of people with epilepsy
could avoid seizure episodes [12]. As a result, substantial effort
and research have gone into developing and implementing
adequate seizure detection and classification algorithms to
alleviate the clinical burden of manual EEG analysis [33].
The International League Against Epilepsy (ILAE) defines
artefact as a physiological potential difference in an EEG
recording caused by something other than the brain, such as
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eye movement, muscle movement, or muscular contractions;
these are often referred to as biological artefacts. Additionally,
recordings may be altered as a result of ambient electrical
noise, and instrument distortion, or a malfunction; these are
referred to as technical artefacts [20].

Early seizure detection methods rely on a variety of non-
specific patient algorithms. More recently, research have fo-
cused on patient-specific algorithms to detect seizures with
most findings obtaining accuracy ranging from 0.83–1.00 [2],
[3]. Despite the excellent accuracy of these methods, the
majority of seizure detection research studies have used the
same dataset from the Department of Epileptology, University
of Bonn. This dataset contains EEG recordings from 10
participants (Five without epilepsy and five with epilepsy)
throughout a 23.5 s period [3]. Therefore, it is a limited
dataset to be used for seizure detection. There have been much
research carried out using the TUH Seizure Corpus dataset,
with Lui et al. [23] achieving a F1-score of 0.97 and Roy et
al. [27] reaching 0.91. An explanation for the terms accuracy
and F1-score are available in Section II-G.

The purpose of this research is to focus on seizure detection
and classification, using a large amount of annotated data. We
provide a novel channel selection strategy that outperforms
established methods. Additionally, our study demonstrates
the feasibility of ensemble learning approaches over typical
classification systems.

This paper is organised as follows: Section II introduces
the dataset, how the signals are pre-processed alongside the
novel channel selection algorithm used, feature extraction,
selection and classification. It also describes the performance
assessment used for this study. Section III presents the results
and discussions gathered from this investigation. Section IV
walks through a general conclusion of this study.

II. METHOD

This research considers three separate scenarios for seizure
detection and classification; (1) detection of seizure and non-
seizure periods, (2) focal-generalised-nonseizure classification,
and (3) multi-classification using nonseizure periods (NNSZ),
simple-partial seizures (SPSZ), CPSZ, tonic seizures (TNSZ),
TCSZ, myoclonic seizures (MYSZ), and absence seizures
(ABSZ).

A. Data Acquisition

Only a small amount of EEG datasets that focus on seizure
detection and classification are available online, free and easily
accessible such as the University of Bonn Dataset [6], CHB-
MIT [32] and TUH-EEG [25]. With over 30,000 clinical
EEG recordings collected over 18 years, starting in 2002
and currently ongoing, TUH Seizure Corpus has the largest
publicly available dataset of EEG recordings. This dataset
can be utilised for both academic and commercial purposes
[29]. The reports comprise unstructured language that includes
information on the patients’ medical histories, medications,
and clinical evaluations. Based on the neurologists’ report
and careful study of the signal, the annotation team was able

TABLE I: TUH Seizure type file count.

Seizure Type Total Count
Simple-Partial Seizures (SPSZ) 8

Complex-Partial Seizures (CPSZ) 162
Tonic Seizures (TNSZ) 28

Tonic-Clonic Seizures (TCSZ) 29
Myoclonic Seizures (MYSZ) 3

Absence Seizures (ABSZ) 20

to classify the types of seizures. The data include sessions
from outpatient care, the intensive care unit (ICU), emergency
multidisciplinary units (EMU), emergency room (ER), and
a variety of other hospital settings. All data contain multi-
channel signals ranging through 20–128 channels. A 16-bit
A/D converter was used to digitise the data. The samples
have a frequency range of 250–1024 Hz. More than 10
different electrode combinations and more than 40 channel
configurations are included in the corpus [25].

For this study, TUH Seizure Corpus dataset v1.5.1 have
been utilised. Only files containing six different seizure types
namely: SPSZ, CPSZ, TNSZ, TCSZ, MYSZ, and ABSZ have
been adopted for this investigation as shown in Table I.
In 2017, the ILAE updated much of the terminology. For
example, SPSZ is now referred to as Focal Aware Seizures
(FAS) [15]. However, in this paper the terminology for the
TUH Seizure Corpus dataset, as shown in Table I will be used.
Our training set consists of 80% of each seizure type and the
remaining 20% was used for testing.

B. Pre-processing

Since TUH Seizure Corpus has data collected from 250–
1024 Hz, all signals were re-sampled to 256Hz to ensure
uniformity [23]. Only channels with EEG information were
selected for further analysis. The first second of every signal
was removed as it was found that this beginning segment often
contains much noise. Low level frequency range, associated
with respiratory artefact, and high level frequency information
is often removed to limit the bandwidth, and noise of the
signal. A first order band-pass Infinite Impulse Response
(IIR) filter from 0.1–80 Hz was performed on the signals,
followed by a 60Hz notch filter used to remove power-line
interference. This is most typically experienced as a result of
a minor problem with disconnected electrodes, which involves
immediate re-connection. Without the notch filter, the signal
interference would likely lead to poor tracing quality [19].
Subsequently the signals were normalised so the range is in
the interval of [0, 1]. This technique of signal normalisation
is to scale EEG signals of all patients to the same amplitude
levels [30]. Data were segmented into 1 s epochs with 0.5 s
overlap. Findings of adjusting the window size clearly reveal
that reducing the window size increases the likelihood of
seizure detection [1]. Furthermore, studies demonstrate that
by reducing the window size, predictive models can detect
some peaks prior to the seizure onset. As a result, the smaller
the window, the better the chance of predicting a seizure [1].
A Kaiser window was applied to the signals with a window
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Fig. 1: EEG Electrode Configuration: International 10-20
System with selected channels described in Section II-C
highlighted in yellow [26].

length of 1 s.

C. Channel Selection

A novel channel selection algorithm was created, which
maps the areas of the brain where normal EEG waveforms
in their specific frequency range should be found. The novelty
of this channel selection method is that it is purely based
on the regions of the brain that typical brain frequencies are
dominant. This allows for further feature extraction to isolate
the frequency ranges mentioned in Table II and discover if a
pattern can be observed to differentiate nonseizure information
against seizures. In Nayak et al. [24], it has been stated that the
δ rhythm is prominent in the frontocentral head region. Due
to light sleepiness, θ is most dominant in the frontocentral
head regions and slowly migrates backward, replacing the
α rhythm. For this reason, the frontal channel was selected
as shown in Table II. In normal waking EEG recordings in
the occipital head area, the posterior dominant α rhythm is
typically present, hence the occipital channel was selected for
feature extraction. The µ rhythm is a form of α rhythm that
manifests itself in the central head regions and has an arch-
like morphology. The frontocentral head areas are where σ
waves are most noticeable. In normal adults and children, the
β rhythm is the most common rhythm. It is most noticeable
in the frontal and central head regions, and it gradually fades
as it moves backward. Therefore, the posterior channel was
selected as shown in Table II. Attempts to locate the γ rhythm
have initiated a lot of research around the world, although
no specific localisation has been discovered and it has been
attributed to different areas in the brain [18]. In this study, the
channels selected are: Central (CZ), Frontal (FZ), Posterior
(PZ), Occipital (O1 and O2), as shown in Figure 1.

TABLE II: Channel Selection Criteria.

Frequency Band Frequency Range (Hz) Electrode Positioning
Delta, δ 0.1–4 FZ
Theta, θ 4–8 FZ
Alpha, α 8–13 O1, O2
Beta, β 14–30 FZ, PZ

Gamma, γ 30–80 CZ
Mu, µ 7–11 CZ

Slow Sigma, σs 12–14 FZ
Fast Sigma, σf 14–16 FZ

Principle Component Analysis (PCA) and Independent
Component Analysis (ICA) have been used in this study to
compare the viability of our novel channel selection method
as they are some of the most popular methods used for
dimenionality reduction [35]. PCA is an unsupervised method
for mapping a dataset to specified feature vectors. It works
by converting a high-dimensional dataset, such as multichan-
nel EEG signals, into a low-dimensional orthogonal feature
subspace, where each of the principal components is known.
The variation of these principle components is organised in
order of magnitude, with the first principle component having
the most variance and the variance decreasing by an order of
magnitude. This will limit the degrees of freedom as well as
the complexities of space and time. The goal is to represent
data in a space that accurately depicts variance in terms of
sum-squared error. ICA is similar to PCA, but each signal
is assumed to be a set of mutually independent signals. The
multidimensional data is split into feature vectors that are
statistically independent. [35].

D. Discrete Wavelet Denoising

Wavelet transform (WT) is a common approach for noise
removal. Morley, a French researcher who focused their work
on seismic data analysis, began research based on the idea
of wavelet transforms in the early 1980s [14]. Farge et al.
[14] contains a comprehensive description of many types of
wavelet analysis methods, such as Continuous Wavelet Trans-
forms (CWT)s and Discrete Wavelet Transforms (DWT)s. WT
methods have been utilised by many researchers to reduce
ocular artefacts (OA) [4], [37], [21]. Wavelet transforms can
provide high frequency resolution at low frequencies whilst
also providing high time resolution at high frequencies.

The DWT of a signal x[n] is composed of approximation
coefficients, Wφ[j0, k], and detail coefficients, Wϕ[j0, k] [9].
The approximation coefficients of signals represent the low-
frequency components derived from the original signal’s low-
pass filter, whilst the detail coefficients are obtained by passing
the signal through a high-pass filter at a higher level. To
compute the detail and approximation coefficients at a lower
level, the signal is down-sampled by two at each level. For
a multi-level decomposition, this tree structure is repeated
as shown in Figure 2. For the objectives of noise reduction
of the EEG data, a 4-level wavelet decomposition using the
‘db4’ Daubechies wavelet as the mother wavelet was selected.
With the noise estimate being level dependent, Minimax soft
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Fig. 2: A 4-level DWT.

thresholding was adopted. Minimax is a global thresholding
method developed by Donoho and Johnstone [11]. This criteria
is based on minimax principle that is used in statistics.

E. Filter Banking

From the five channels selected in Figure 1, 10 features
where extracted by means of filter banking based on the
criteria shown in Table II. A first order bandpass filter was
used to split the various frequency bands.

F. Feature Selection and Classification

Following feature extraction, statistical analysis of each 1 s
epoch of all 10 channels was undertaken to further reduce
the dimensionality of the dataset. The statistics utilised in-
clude; maximum, minimum, root-mean-square (RMS), vari-
ance, standard deviation, log energy, normalised entropy, and
maximum frequency. Patient age is also used as a feature,
due to its general importance in seizure diagnosis [34]. The
equations of these statistics are as follows:

1) RMS: The RMS level of a vector x is defined as:

xRMS =

√√√√ 1

N

N∑
n=1

|xn|2 (1)

with the summation taking place along the chosen dimension.
2) Variance: For a random variable vector A made up of

N scalar observations, the variance is:

V =
1

N − 1

N∑
i=1

|Ai − µA|2 (2)

where µ is the mean of A and it is written using:

µA =
1

N

N∑
i=1

Ai (3)

Some definitions of variance use a normalisation factor of N
instead of N − 1. In either scenario, the typical normalisation
factor N is assumed for the mean.

3) Standard Deviation: The standard deviation is the square
root of the variance and it is written using:

S =

√√√√ 1

N − 1

N∑
i=1

|Ai − µA|2 (4)

4) Log Energy: Log energy is defined as:

LE(si) = log(s2i )

LE(s) =
∑

i log(s2i )
(5)

where the convention log(0) = 0 is assumed. The signal is s
and s2i the coefficients of s in an orthonormal basis.

5) Normalised Entropy: The concentration in lp norm en-
tropy, where p = 1.1. The equation for normalised entropy
is:

NE(si) = |si|p

NE(s) =
∑

i|si|p = ||s||pp
(6)

where s is the signal and s2i the coefficients of s in an
orthonormal basis.

6) Maximum Frequency: The maximum frequency is
achieved firstly by getting the Fast Fourier Tranform (FFT)
of each epoch and it can be expressed using:

Y (k) =

n∑
j=1

X(j)Wn(j − 1)(k − 1) (7)

where
Wn = e(−2πi)/n (8)

The absolute values are then obtained using the following
equation:

abs =
√
Imag2 +Real2 (9)

Before classification of this data could begin, some post-
processing was required as the dataset was completely un-
balanced, with the large majority of labels being nonseizure
periods. Therefore, an algorithm was implemented to balance
out this dataset, where the total count of seizure and nonseizure
periods were tallied. Any addition labels beyond the mean
where removed at random.

Ensemble bagged trees (EBT), otherwise known as Boot-
strap is a prominent ensemble machine learning method that
has previously demonstrated its efficiency in a variety of real-
world categorisation problems. EBT was first developed by
Breiman in 1996 [7]. It teaches a set of classifiers how to
classify a new object [8]. Bagging is a technique for combining
classifiers to achieve higher accuracy than a single classifier.
Using bootstrap re-sampling, the EBT classifier separates the
training data into subsets. Each subset is used as training
data to build each decision tree. The bootstrapping number
determines the number of decision trees that are built. The
outputs of the decision trees are then used in the majority
of voting stage. This model generates an ensemble of simple
decision trees [13].

For this study, EBT classification was used with 500
learning cycles, after which k-fold cross validation was then
performed using 10 sub-samples. The k-fold cross-validation
algorithm divides all samples into k sub-samples at random.
A sub-sample is validated using k sub-samples, and the linked
classifier is tested using the remaining k−1 sub-samples. This
method is carried out k times in total. For verification, each
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sub-sample is utilised only once. The average of k outcomes is
then used to calculate a single result. As a result, all samples
collected by randomly repeated sub-sampling can be used for
both training and validation [13].

The k-nearest neighbour classifier has been used in this
study as a comparison classifier against EBT classification.
It is a simple, nonparametric, and nonlinear classifier [31].
It is based on the similarity measure between the training
and test dataset. The training sets create the n-dimensional
pattern space, and each set represents a point in n-dimensional
space. Based on nearby k training data, test/unknown data
are allocated to the class. Eq. (10) is used to calculate the
‘nearness’ of the dataset.

ED =

√∑n

i=1
(Y1i − Y2i)2 (10)

where

Y1i = (y11 , y12 , . . . , y1n) and Y2i = (y21 , y22 , . . . , y2n) (11)

Before doing the computation on ED, the values of each
attribute can be normalised. The classifier generally uses a
majority vote from the k-nearest neighbours instead of using
the single closest dataset. The value of k, the number of neigh-
bours with the lowest error rate, has been set to eight [31].
Considering that k-NN is a distance based algorithm, the dis-
tance calculation has an impact on classification performance.
The distance metric, which is a mathematical representation
that determines the distance between two data points, is used to
calculate the distance. For this study, cityblock was selected as
the distance metric, in which the distance between two points
in a fixed Cartesian coordinate system is measured [36] as
shown in Eq. (12) below

Dcity = |x1 − x2|+ |y1 − y2| (12)

where the distance weight was set such that wD = 1/D2
city .

G. Performance Assessment

Sensitivity, specificity, accuracy, and F1-score are the most
often used performance measures in signal processing to eval-
uate the performance of an algorithm. The following equations
are used to describe these metrics:

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

TN + FP
(14)

Accuracy =
TP + TN

TN + FP + TP + FN
(15)

Precision =
TP

TP + FP
(16)

F1− Score = 2 ∗ Precision ∗ Sensitivity
Precision+ Sensitivity

(17)

where TP is the number of seizure periods that have been
detected by both a human expert and the algorithm, and FN

TABLE III: Three tables depicting test results for seizure
detection and classification.

Method Sensitivity Specificity Accuracy F1-Score
Novel Channel Selection

EBT 0.75 0.75 0.82 0.73
k-NN 0.73 0.73 0.77 0.68

ICA
EBT 0.57 0.57 0.78 0.58
k-NN 0.56 0.56 0.66 0.54

PCA
EBT 0.62 0.62 0.74 0.61
k-NN 0.55 0.55 0.55 0.49

(a) Performance metrics for Scenario 1: Detection using the novel
channel selection method, ICA, and PCA.

Method Sensitivity Specificity Accuracy F1-Score
Novel Channel Selection

EBT 0.59 0.77 0.68 0.61
k-NN 0.64 0.79 0.51 0.47

ICA
EBT 0.47 0.74 0.40 0.32
k-NN 0.37 0.69 0.31 0.25

PCA
EBT 0.50 0.73 0.35 0.30
k-NN 0.42 0.69 0.31 0.25

(b) Performance metrics for Scenario 2: Focal-generalised-nonseizure
Classification using the novel channel selection method, ICA, and PCA.

Method Sensitivity Specificity Accuracy F1-Score
Novel Channel Selection

EBT 0.55 0.93 0.69 0.51
k-NN 0.46 0.91 0.53 0.41

ICA
EBT 0.26 0.89 0.47 0.47
k-NN 0.21 0.87 0.33 0.12

PCA
EBT 0.27 0.88 0.45 0.45
k-NN 0.25 0.87 0.32 0.32

(c) Performance metrics for Scenario 3: Multi-classification using the
novel channel selection method, ICA, and PCA.

is the number of seizure periods that have been determined by
a human expert but have not been discovered by the algorithm.
The number of nonseizure periods detected by both a human
expert and the algorithm is represented by TN , and FP
defines the number of nonseizure periods that the algorithm
detected as seizure but were not recognised as such by a human
expert [5].

III. EXPERIMENTAL RESULTS AND DISCUSSION

Comparing the EBT method against k-NN classification, the
EBT method clearly outperforms k-NN in all the scenarios
explored in this study. From the results presented in Table
III, it is clear too that our novel channel selection method
outperforms both ICA and PCA.

Figure 4a demonstrates a confusion chart of the results gath-
ered from Scenario 1: seizure detection, where the classifier
is able to accurately detect 0.86 of nonseizure periods and
0.65 of seizure periods, with an overall accuracy of 0.82, the
highest results from this investigation. The poorest accuracy
and F1-score are from using PCA with k-NN at 0.55 and 0.49,
respectively, as shown in Table IIIa. The true positive rate of
seizure detection is quite low but with few false positives.
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(a) Seizure Detection (Scenario 1).

(b) Focal, general and nonseizure classification (Scenario 2).

(c) Multi-classification (Scenario 3).

Fig. 3: Three ROC curve graphs of test performance results
for seizure detection and classification from novel channel
selection algorithm using EBT classifier.

Nonseizure detection has a higher true positive rate but also a
high false positive rate as indicated by the optimal ROC curve
point in Figure 3a.

Considering Scenario 2: focal-generalised-nonseizure clas-
sification as shown in Figure 4b, and Table IIIb, the superiority
of using the combination of the novel channel selection
method and EBT classification is evident with an accuracy
and F1-score of 0.68 and 0.61, respectively. It is important
to note that there are more cases of nonseizure periods being
incorrectly classified as focal seizures as shown in Figure 4b.
In this setting however, it seems that using the combination of
ICA and k-NN produced the poorest results with an accuracy
and F1-score of 0.31 and 0.25, respectively. Although these
results are the same when using the combination of PCA

(a) Confusion matrix depicting seizure (SZ) vs nonseizure (NNSZ)
results (Scenario 1).

(b) Confusion matrix depicting focal seizure, generalised seizure vs
nonseizure results (Scenario 2).

(c) Confusion matrix depicting multi-classification (Scenario 3).

Fig. 4: Three confusion matrices of test performance results
for seizure detection and classification from novel channel
selection algorithm using EBT classifier.

and k-NN, in this circumstance, the sensitivity results are the
lowest at 0.37. From Figure 3b, it it shown that the ROC
curve for generalised seizure classification has the highest true
positive rate. Generalised seizures have an extremely low false
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positive rate, however the optimal ROC point indicates that the
true positive rate is quite low at just above 0.40. This classifier
performs well for nonseizure classification, however there is
a trade-off in the ROC curve due to the high false positive
rate. Therefore, it is likely nonseizure periods are being overly
misclassified and the model could be overfit. Focal seizures
have the lowest levels of true positive detection rates and the
true positive rate is also extremely low. Focal seizures fall
closest to the diagonal line of the ROC graph, indicating that
these results are likely random.

In the setting of multi-classification, overall accuracy has
actually improved when comparing with focal-generalised-
nonseizure classification. The novel channel selection algo-
rithm using EBT classifier still achieved the best results with
an accuracy and F1-score of 0.69 and 0.51, respectively. In
this case, the poorest results are again gathered using ICA
with k-NN with an accuracy and F1-score of 0.33 and 0.12,
respectively. Interestingly from Figure 4c, it can be observed
to a greater extend than in Figure 4b that a relatively high
quantity of nonseizure periods are being incorrectly identified.
The confusion chart allows us to establish that the classifier in-
correctly identifies some of these nonseizure cases as complex-
partial seizures.

The trend for nonseizure classification in Scenario 3: multi-
classification, closely resembles that of the other classification
scenarios with both a high true positive rate and high false
positive rate, possibly meaning that there is an overfitting
issue with nonseizure classification as shown in Figure 3c.
It can be noted that simple-partial, tonic, and tonic-clonic
seizures have a very low true positive and false positive rate,
possibly outlining the need for more data, as these classes
are underrepresented. It is observed that the ROC curve for
absence seizures falls closely to the perfect classifier margin,
with a high true positive rate and virtually no false positive
detection, also evident from Figure 4c. This pattern closely
matches that of the ROC curve for generalised seizure clas-
sification in Figure 3b, indicating the greatest barrier of this
work is creating a functional model to classify focal seizures,
specifically complex-partial seizures. Myoclonic classification
did not perform effectively, with slightly more true positive
detection than false positive. Simple-partial seizure classifica-
tion was not adequate, with again more false positives. Only
complex-partial and absence seizure classification performed
to an acceptable range.

IV. CONCLUSIONS

The main challenge that exists today is obtaining an accurate
automated seizure classification model that can differentiate
between various seizure types to overcome the clinical burden
of manual EEG analysis. This paper has presented the ap-
plication of using our novel channel selection method based
on frequency information dependent to specific regions of a
normal brain. From the results presented, it can be noted that
this method does successfully isolate the information found in
an abnormal brain during seizure occurrences. It is evident that
using this channel selection method combined with the EBT

classification model outperforms other commonly used meth-
ods for seizure detection, with the highest accuracy of 0.82.
From this experiment, it has also been discovered that there
are difficulties with classification models when differentiating
nonseizure periods from complex-partial seizures. The results
from the confusion matrices in Figure 4 provide the following
summary:

• Figure 4a — many nonseizures being misclassified as
seizures,

• Figure 4b — many nonseizures being misclassified as
focal seizures,

• Figure 4c — many nonseizures being misclassified as
complex-partial seizures.

Potential future work will involve researching possible
methods to isolate nonseizure periods from complex-partial
seizures. Furthermore, this work has proved promising in terms
of multi-classification of the various seizure types. Future work
can focus on improving this current methodology, with the
possibility of moving more into deep learning methods to
classify the various seizure types. Our novel channel selec-
tion method with long short-term memory or various deep
learning methods may provide better results, as there has been
promising results recently using long short-term memory in
seizure classification [16]. It can also be noted that results
gathered from Scenario 3 are not much different from Scenario
2, therefore we will redact Scenario 2 from any future work.
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[28] Saab K, Dunnmon J, Ré C, Rubin D, Lee-Messer C. Weak Supervision
as An Efficient Approach for Automated Seizure Detection in Electroen-
cephalography. NPJ Digital Medicine. 2020 Apr 20;3(1):1–12.

[29] Shah V, Von Weltin E, Lopez S, McHugh JR, Veloso L, Golmohammadi
M, Obeid I, Picone J. The Temple University Hospital Seizure Detection
Corpus. Frontiers in Neuroinformatics. 2018 Nov 14;12:83.

[30] Sharma R, Chopra K. EEG-based Epileptic Seizure Detection using
GPLV Model and Multi Support Vector Machine. Journal of Information
and Optimization Sciences. 2020 Jan 2;41(1):143–161.

[31] Sharmila A, Geethanjali P. DWT Based Detection of Epileptic Seizure
from EEG Signals using Naive Bayes and k-NN Classifiers. IEEE
Access. 2016 Jun 30;4:7716–7727.

[32] Shoeb AH. Application of Machine Learning to Epileptic Seizure Onset
Detection and Treatment (Doctoral dissertation, Massachusetts Institute
of Technology).

[33] Sriraam N, Raghu S, Tamanna K, Narayan L, Khanum M, Hegde
AS, Kumar AB. Automated Epileptic Seizures Detection using Multi-
features and Multilayer Perceptron Neural Network. Brain Informatics.
2018 Dec;5(2):1–10.

[34] Stafstrom CE, Carmant L. Seizures and Epilepsy: An Overview for
Neuroscientists. Cold Spring Harbor Perspectives in Medicine. 2015
Jun 1;5(6):a022426.

[35] Subasi A, Gursoy MI. EEG Signal Classification using PCA, ICA, LDA
and Support Vector Machines. Expert Systems with Applications. 2010
Dec 1;37(12):8659-8666.

[36] Yean CW, Khairunizam W, Omar MI, Murugappan M, Zheng BS, Bakar
SA, Razlan ZM, Ibrahim Z. Analysis of the Distance Metrics of KNN
Classifier for EEG Signal in Stroke Patients. In 2018 International
Conference on Computational Approach in Smart Systems Design and
Applications (ICASSDA) 2018 Aug 15 (pp. 1–. IEEE.

[37] Zikov T, Bibian S, Dumont GA, Huzmezan M, Ries CR. A Wavelet
Based De-noising Technique for Ocular artefact Correction of the
Electroencephalogram. In Proceedings of the Second Joint 24th Annual
Conference and the Annual Fall Meeting of the Biomedical Engineering
Society][Engineering in Medicine and Biology 2002 Oct 23 (Vol. 1, pp.
98–105). IEEE.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1276


