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Abstract—There are a variety of methods used to understand
and interpret an organism’s phenotype, the physical expression
of one or more genes. Epistasis, the phenomenon of one mutation
affecting the resulting quantitative or qualitative phenotype, is
used to assess gene variation in an attempt to find a combination
of single nucleotide polymorphisms (SNPs) that contribute to
a certain phenotype. Since one SNP rarely completely describes
an organism’s phenotype, detecting these groups, or coalitions, of
mutations without relying on an exponential number of numbers
is one of the main challenges in this field. To alleviate these
computational bottlenecks, we propose a neighborhood-based
collaborative filtering approach by viewing this data with a
recommender system formulation. As such, we are able to detect
statistically significant higher order SNP interaction phenotypes
related to muscle mice genomic variants.

I. INTRODUCTION

The genome of all living organisms are comprised of the
basepairs A, G, C, and T. Changes may occur from a variety of
reasons. These changes are known as genomic variations and
may take the form of longer mutations, known as structural
variants (SVs), or changes of a single basepair, referred to
as single nucleotide polymorphisms (SNPs) [1]. The latter
mutations are known to contribute to genetic diversity and
are oftentimes associated with health concerns or disease (e.g.
cancer)[2], [3]. In some cases, multiple mutations may be
viewed as an interconnected network, or coalition, leading
to increased fitness in adaptations such as diet and altitude
acclimation [4], [5], [6], [7], [8].

There are a variety of methods used to understand and
interpret one’s phenotype, but it is rare that one SNP com-
pletely describes the physical expression of genes. As such,
we focus on detecting epistasis, the interaction and dependency
of genetic mutations in an organism. In particular, we note that
these effects are usually not additive and are illustrated in Fig.
1. Epistasis is also used to assess gene variation in an attempt
to find a combination of single nucleotide polymorphisms
that contribute to a certain phenotype [9], [10]. It originally
described the masking effect a variant or allele at one locus
prevents the variant at another locus from manifesting its effect
[11].

Many methods exist to detect these groups of mutations
and they are typically divided into quantitative or qualitative
phenotypes [12], [13]. Recent methods have also included
exploring non-abelian Fourier analysis to create a subset of
higher-order coalitions to further consider [14]. The difficulty

Fig. 1. Illustration of non-additive effects of single nucleotide polymorphisms
(SNPs) on quantitative phenotype in an organism. Shaded circles represent
mutations, while white circles represent normal basepairs. Groups of SNPs,
rather than individual ones, often are responsible for disease and evolutionary
adaptations.

with effectively detecting epistasis is due to complicating
factors such as an increased number of contributing loci and
susceptibility alleles, incomplete penetrance, and contributing
environmental effects. Moreover, exhaustive searches within
pairs, triples, or higher-order interactions of mutations may
result in a computational bottleneck [15]. These types of
statistical approaches also are prone to type 1 errors, and
Bonferroni corrections do little to alleviate this shortcoming
[16].

In this paper, we propose a recommender system approach,
where we use neighborhood-based collaborative filtering tech-
niques on a reduced data matrix to extract the most similar
individuals with an extreme quantitative phenotype. We then
post-process the most similar users to narrow the candidate
groupings of mutation. Although this method has been widely
used in product recommendations, this is the first application,
to our knowledge, of such a method to study epistasis. In
applying this framework, we detect higher-order interactions of
single nucleotide polymorphisms by avoiding an exponential
number of models. Our method is scalable to larger data, and
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we present our results on both simulated and experimental
data.

II. METHOD

We consider a recommendation system framework to detect
statistically significant coalitions of single nucleotide polymor-
phisms (SNPs) on quantitative phenotypes in genomic signals
from m individuals. If only one individual has a SNP at a
location j, then that locus, or genomic position, will still be
included in the data matrix. For simplicity, we focus on up
to fourth-order coalitions of SNPs but our method can be
expanded to higher-order interactions.

A. Observational Model

We begin by considering the SNP matrix S,

S =

S1 S2 · · · · · · Sn



I1 0/1/2 · · · · · · · · · 0/1/2

I2
...

. . .
... · · ·

...
...

... · · ·
. . . · · · 0/1/2

...
...

. . .
...

. . .
...

Im 0/1/2 · · · 0/1/2 · · · 0/1/2

, (1)

where Si (i = 1, 2, . . . , n) represents the n SNPs to
be considered and Ij (j = 1, 2, . . .m) represents the m
individuals (i.e., Ij represents the jth row and Si represents
the ith column of S, respectively). We note that each entry in
S is either 0, 1, or 2, where 0 indicates no presence of a SNP,
1 indicates one copy of the SNP, and 2 indicates two copies.
The quantitative phenotype vector ~P ∈ Rm is horizontally
stacked to the right of (1), to create the data matrix, X ,

X = [S|P ]. (2)

We consider the original data matrix as well as a heterozy-
gous variation of (2) in which the presence of a SNP will be
considered a 1. We refer to this as the binary, or heterozygous,
reduction of (2).

B. Recommender System Approach

We implement a collaborative filtering approach in which
we compute the SVD of X [17], [18]. We denote the low-
rank approximation, with rank r, of X as X̃ . To determine
similarity, wt,u, between individual t with the highest (or
lowest) quantitative phenotype when compared to individual
u, we use both the Pearson correlation measure

wt,u =

∑
j∈S(It,j − Īt)(Iu,j − Īu)√∑

i∈S(It,j − Īt)2
∑

i∈S(Iu,j − Īu)2
,

and cosine similarity,

wt,u = cos(It, Iu) =
It · Iu

‖It‖2 × ‖Iu‖2
.

Instead of removing duplicate individuals, we avoid the
singularity caused from identical individuals in (1) by adding
a small amount of Gaussian noise N (µ = 0.005, σ2 = 0.01)
to (1). This approach results in the k individuals most similar
to individual t.

C. Grouping Top SNPs

After extracting the top k individuals most similar to the top
(and lowest) individual t through a chosen similarity metric,
we continue to group the overlapping mutations shared by
these k individuals. We find the highest first-order to fourth-
order single nucleotide polymorphisms by combining the total
presence of each SNP within the set of the top k individuals
and take the mean of each combination.

We summarize our neighborhood epistasis recommendation
detection approach in Algorithm 1 below. By default, we report
the top 10 most similar individuals.

Algorithm 1: Neighborhood Epistasis Recommenda-
tion Detection (N.E.R.D.) Algorithm

1 function N.E.R.D. (X );
Input : SNP - Phenotype Data matrix X = [S|P ]
Output: Highest and Lowest SNP groupings

2 begin
3 (optional) Create binary reduction of S.
4 Extract tHighest and tLowest individuals from P
5 Compute SVD of X +N (0.005, 0.01)
6 for tHighest and tLowest do
7 Calculate similarity metric for all m individuals
8 Determine top 10 similar individuals
9 Calculate mean occurrence of SNPs for top 10

individuals
10 end
11 Return SNP groupings with highest mean

occurrence among top individuals with respect to
tHighest and tLowest.

12 end

III. RESULTS

To validate our method, we implemented our method to
detect SNP coalitions on both simulated and a subset of real
mice genotype-phenotype data [19]. All experiments were run
on a commodity machine with 8 GB of RAM and an Intel
i5 processor. In all of our experiments, we use a rank 15
approximation for X̃ . Simulated results followed a similar
approach as [14], and our method was able to detect first
as well as higher-order interactions in this data (results not
displayed).

A. Karst Mice Data

In the validation of our method, we investigated the weight
and lean mass of male and female mice in an effort to draw
a conclusion between their quantitative phenotypic response
and the high order combinations of their SNPs [19]. This
previously study provides a candidate set of mutations in
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Fig. 2. Mice population with log(lean mass) plotted. Left. Female mice with coalition BFG are highlighted in red. Right. Female mice with coalition BCFG are
plotted in purple. In both examples, our method (using cosine similarity) identifies these groupings of SNPs as ones with a statistically significant difference
from the population’s lean mass.

muscle mice from intercrossed lines. Here, we focus on the
set of SNPs from Chromosome 1 and note that each SNP has
a value of 0, 1, or 2, where: 0 indicates no presence of a
copy from the parents, 1 indicates 1 copy (haploid) from the
parents, and 2 indicates two copies (diploid) from the parents.
For simplicity, we alphabetically labeled each SNP as seen in
Table I.

TABLE I
CHROMOSOME 1 SNPS (ALPHABETICAL LABELS) FROM KARST (2011)

MUSCLE MICE

Label SNP Label SNP Label SNP

A rs31194300 F rs31684041 K rs3672697
B rs4222269 G rs31234127 L rs31424068
C rs4222320 H rs31791013 M rs32257630
D rs31991963 I rs32520046 N rs31474366
E rs31886089 J rs4222579 - -

We computed the SVD of each set of mice data so we could
extract the rank r = 15 approximation. We found the mouse
with the highest phenotypic response and the mouse with the
lowest phenotypic response for lean mass and body weight and
applied Algorithm 1 to find the top 10 similar mice and we
reported the weighted average of SNPs most occurring in this
group. Both Fig. 2 and 3 illustrate the difference between our
method’s suggested groupings and how those subpopulations
differ in lean mass and body weight, respectively. The detected
groupings are not reported in [19], but yet may prove to have
a positive effect on increased lean mass and body weight.

From Table II, we see that our approach is able to identify
statistically significant (p-value < 0.05), first-order, second-
order, and higher-order groupings of SNPs. Given data for
male and female mice, we were only able to obtain statisti-
cally significant coalitions for female mice and this warrants
further exploration. In Table III, we see the strongest SNP
combinations for first-order, second-order, and third-order for

TABLE II
STATISTICALLY SIGNIFICANT COALITIONS FOR BODY WEIGHT AND

LEAN MASS

Coalition p-value Sex
Body Weight Lean Mass

BC 0.00041 0.0068 Female
BF 0.00419 0.0116 Female
BG 0.000080 0.00021 Female
CF 0.00467 0.02294 Female
CG 0.000093 0.00058 Female
FG 0.00328 0.00136 Female
EF 0.0126 0.0246 Female
EG 0.00034 0.00061 Female

BCF 0.00408 0.0188 Female
BCG 0.000078 0.00045 Female
BFG 0.000078 0.00021 Female
CFG 0.000093 0.00058 Female
EFG 0.000339 0.000607 Female
GMN 0.0553 0.0165 Female
IMN 0.1293 0.0432 Female

BCFG 0.000078 0.00045 Female
BEMN 0.0367 0.0663 Female
EFGH 0.00275 0.00683 Female
EFGI 0.00294 0.00763 Female
EFGJ 0.00188 0.00507 Female
EFGK 0.0103 0.0409 Female
EFGL 0.0033 0.0197 Female
EFGM 0.0112 0.0093 Female
EFGN 0.0019 0.0016 Female
FGMN 0.0553 0.0165 Female

both male and female mice body weights and lean mass. We
hypothesize that including a higher rank approximation of the
SNP matrix will yield more accurate results. Nevertheless, we
are able to greatly reduce the exponential number of models
when detecting these higher-order interactions.

One of the drawbacks of this method, similarly to that of
other methods, is the issue with calculating the higher-order
SNP iterations by taking the mean. We found this method
to be quicker than using logistic regression, and it can still
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Fig. 3. Mice population with log(body weight) plotted. Female mice with
coalition BEMN are highlighted in blue. In this case, our method (using cosine
similarity and Pearson correlation) identified this groupings of SNPs which
reflect a statistically significant difference from the population’s body weight.

TABLE III
STRONGEST COALITIONS OF MAX LEAN MASS DATA

Coalition Strength Sex

J 17.0 male
HI 16.0 male

HIK 16.0 male
L 16.0 female

CD 15.0 female
CDE 15.0 female

be implemented rather quickly. Our results on real data also
suggest future experimental validation routes for researchers
without extensive combinations of mutations.

IV. CONCLUSIONS

In this paper we present a recommender system approach
to detecting epistasis in many individuals across SNPs. In
particular, we showed how our method successfully identifies
statistically significant higher order interactions of genomic
mutations in mice data. By framing quantitative phenotypes as
a rating, our binary reduction also successfully identifies the
most similar individuals. Obtaining these values and combi-
nations yields candidate groupings by comparing those SNPs
with the quantitative phenotypic response. This and similar
approaches may also have personalized health benefits when
other -omic data sets are incorporated by detecting important
groupings of contributing factors to disease and health. In
future studies, we plan on systematically investigating higher-
order interactions while varying the number of principal
components, incorporating genome-wide association studies
(GWAS) data in scaling our approach, and extend our model
comparisons to other methods.
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[12] Asko Mäki-Tanila and William G Hill. Influence of gene interaction on
complex trait variation with multilocus models. Genetics, 198(1):355–
367, 2014.

[13] Clement Niel, Christine Sinoquet, Christian Dina, and Ghislain Roche-
leau. A survey about methods dedicated to epistasis detection. Frontiers
in Genetics, 6:285, 2015.

[14] David Uminsky, Mario Banuelos, Lillian González-Albino, Rosa Garza,
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