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Abstract—The development of automated driving technology
has concentrated on safety aspects such as preventing traffic
accidents and not focusing on ride comfort. To realize a reliable
technology, it is necessary to consider the ride comfort since
automated vehicles use computer control for all operations such
as steering wheel and gas pedal. In this paper, we hypothesize that
abnormalities in braking timing were reflected in the physiologi-
cal signals. The abnormal braking timing can be identified from
the characteristics of EEG and heartbeat interval. We analyzed
the EEG and heart rate intervals of normal and abnormal brake
timing created by the simulator to verify the hypothesis. We
classified the brake condition by a support vector machine. As a
result of using the features of the EEG and heartbeat intervals
to discriminate the abnormal brake using a support vector
machine, four out of the nine experimental participants achieved
an average correct answer rate of more than 80%. Therefore,
it was found that the abnormal brake could be estimated from
EEG and heartbeat interval features under the presentation of
driving videos with different braking timing.

I. INTRODUCTION

There is a lot of research and development on automated
driving in the automotive industry. Research on automated
driving technology concentrates on safety aspects, such as
preventing traffic accidents, and does not focus on ride com-
fort [1], [2]. Since automated vehicles use computer control
for all steering wheel and gas pedal operations, ride comfort
must also be considered to achieve reliable technology.

Vertical vibrations and speed fluctuations in the direction of
travel have been cited as factors that degrade the ride quality
of automobiles, with emergency braking, in particular, causing
discomfort for passengers [3], [4]. In order to improve the
performance of such ride comfort, it is necessary to have an
index that can objectively evaluate the passenger’s condition
numerically.

The validity of physiological signals has been pointed out
as one of the methods to evaluate the psychological state of
passengers objectively. In particular, alpha-band brain activity
and heart rate intervals are effective as indicators of passenger
intentions and changes in psychological state [5], [6]. For
alpha-band brain activity, Bi et al. reported that event-related

desynchronization (ERD) and event-related synchronization
(ERS) in the alpha rhythm could be used to control the left and
right directional changes of the vehicle [5]. Regarding heart
rate intervals, Kato et al. evaluated changes in the driver’s
psychological state in response to vehicle vibration using the
ratio of low-frequency to high-frequency components of the
heart rate interval [6]. Furthermore, Hu et al. confirmed ERD
in alpha-band brain activity. They reported an increase in the
ratio of low-frequency to high-frequency components in the
heartbeat interval when experimental participants felt discom-
fort or stress due to simulated abnormal brake timing [7].
However, whether these features based on brain activity and
heartbeat interval can detect break conditions is unclear.

In this paper, we focused on the fact that abnormalities in
brake timing are reflected in the psychological signals and
hypothesized that EEG and heart rate features could identify
the abnormal brake. Two driving videos with different braking
timing were presented to the experimental participants, and
EEG and ECG intervals were recorded to test this hypothesis.
After that, we used a support vector machine (SVM) of the
recorded EEG and ECG features to identify the abnormal
brake and evaluated the results.

II. MATERIAL AND METHODS

To measure physiological signals during a normal and
an abnormal brake in a simulated autonomous vehicle, the
experiment was divided into two phases: Phases 1 and 2.
During Phase 1, we created a driving simulation of the
autonomous vehicle and measured the normal brake distance
of each subject under different scenes of driving simulation. In
Phase 2, we created normal and abnormal brake situations of
driving simulation using the brake distance recorded in Phase
1.

A. Participants

Eighteen participants (15 males and 3 females) with no
cognitive function problems participated in the experiment.
All participants had obtained a regular driver’s license, and
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Fig. 1. The electrode locations of EEG

18 (sub1–sub18) participated in Phase 1. The EEGs of 15
participants were measured, except for sub3, sub6, and sub8.
The heart rate intervals of 9 of the 15 participants (sub7,
sub9, sub12, sub13, sub14, and sub15; 7 males and 2 females)
were measured. Before the experiment, informed consent was
obtained from the participants based on the approval of the
Research Ethics Committee of Tokyo University of Agriculture
and Technology.

B. Data Acquisition

For EEG measurements, 30 scalp electrodes were used ac-
cording to the electrode configuration of the International 10–
20 Method. The electrode configuration can be seen Fig. 1. To
confirm eye movements, two electrodes were placed to record
the electrooculogram. These observed signals were recorded
using a 32-channel DC amplifier (Polymate AP5148, Miyuki
Giken, Japan) and software (AP Monitor) with the average
of all electrodes as the reference potential. The sampling
frequency was set to 1,000 Hz.

The ECG RR interval data was recorded with a wearable
heart rate sensor (WHS-1, UNION TOOL Co., Tokyo, Japan).
A belt electrode set at the skin below the heart and around the
chest was used to record the ECG RR interval.

C. Use Scenes of Driving Simulator

As stimulus materials, we used the driving simulator created
by Hu et al. [7], consisting of five city driving scenes as shown
in Fig. 2 using Unity 3D (Unity Technologies, USA). We
extended the driving scenes to day driving scenes and night
driving scenes by changing the lighting environment for a total
of ten scenes (five-day and five-night scenes). A signal light
and a stop line were provided in each scene, and the vehicle
started at an initial speed of 70 kilometers per hour. The total
distance from start to stop line was set at 300 m. We used
a photodiode to synchronize the stimulus generating machine
and the physiological signals recording machine. The white
square in the left-upper corner was used to send a signal to
the photodiode.

Fig. 2. A screen-shot of a day driving scene

Fig. 3. A photo of the experiment environment and equipment

D. Phase 1: Measure Brake Timing

To ensure the normal brake distance that the participant
deems appropriate is available. Participants were instructed
to focusing on the monitor during the vehicle running and
pressed the brake button when they felt they should have
brake and the vehicle could stop in front of the stop line
smoothly and safely. Unity’s program recorded the brake
distances. After the participant pressed the brake button, the
vehicle decelerated with a constant deceleration and stopped
in front of the stop line. One trial consisted of starting and
stopping the vehicle, and ten trials were conducted for each
scene. As mentioned in the previous section, there were ten
different scenes, so 100 trials were conducted. The experiment
environment and equipment can be seen in Fig. 3. During the
whole experiment, all stimuli were presented on a 31.5-inch
LCD monitor. Participants were seated comfortably in a play-
seat about 1 m away from the LCD monitor.

E. Phase 2: Measure Physiological Signals

We created auto-driving simulations with two situations:
normal and abnormal brake. Using the same brake distance
recorded in Phase 1, we created the normal brake auto-driving
simulation. Using half of the brake distance recorded in Phase
1, we created the abnormal brake auto-driving simulation. As
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Fig. 4. Phase 2 experiment flow of one trial in normal and abnormal brake
situation. The onset of breaking in both conditions is defined as t = 0 in the
analysis. There were 80 normal and 20 abnormal trials in Phase 2.

can be seen in Fig. 4, when the vehicle arrived at each vertical
line location of the normal and abnormal brake situation, a
trigger signal was sent to the photodiode. The trigger signals
were used to synchronize the brake timing of the two different
brake situations. The experiment of Phase 2 contained 100
trials (80 normal and 20 abnormal brakes).

F. Signal Pre-processing

The EEG data were analyzed using the open-source Python
program MNE-Python [8]. A 0.2–60 Hz FIR bandpass filter
(designed with a hamming window) and a 50 Hz notch filter
were applied to the signal. Trials with noticeable artifacts were
removed from the analysis. For each trial, a 2-s segment, one
second before and after the onset of braking (−1 ≤ t ≤ 1),
was extracted. The baseline was defined as the signal with a
length of a second between −15 and −14 seconds with respect
to the onset of braking (−15 ≤ t ≤ −14).

The ECG RR interval data were analyzed using the open-
source Python program hrv-analysis 1.0.4 [9]. The RR interval
value was removed (the RR interval was 400 or less, 1,200
or more), and the missing value was linearly interpolated. A
20-s segment, 10 seconds before and after the onset of braking
(−10 ≤ t ≤ 10), was extracted for each trial.

G. Feature Extraction

We focused on the fact that abnormalities in braking timing
were reflected as discomfort in the EEG and heartbeat interval.
The feature values extracted from the EEG and heart rate
interval were shown in Table I. Fourteen indices were used
as feature values.

The EEG feature extraction was carried out using spectral
analysis. First, the power distribution was studied by trans-
forming the EEG into power spectral density (PSD) using a
fast Fourier transform (FFT) and using 10-s windows with
50% overlapping windows multiplied by the Hamming func-
tion. Second, from each window, the EEG was decomposed
into subbands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–
12 Hz), beta (12–30 Hz), and gamma (30–40 Hz). Third,
the PSD results of each frequency band were normalized

TABLE I
EEG AND HEARTBEAT INTERVAL FEATURES

Physiological Signals Features
EEG Theta power (4–8 Hz)

Alpha power (8–13 Hz)
Low alpha power (8–10 Hz)

High alpha power (10–13 Hz)
Beta power (13–30 Hz)

Low beta power (13–21 Hz)
High beta power (21–30 Hz)
Gamma power (30–47 Hz)

Beta/(Alpha+Theta))
Theta/Alpha
Theta/Beta

ECG RR interval LF/HF ratio
CSI
CVI

(1/f) to obtain there lative PSD of each band to the baseline
time period. Finally, the resulting PSD values in each band
were averaged to obtain the power spectral features used for
classification. The power ratios were obtained from the PSD
of each frequency band [10].

The RR interval feature extraction was carried out using
frequency domain analysis and non-linear domain analysis.
For frequency domain analysis, the preprocessed RRI values
were linearly interpolated and transformed into power spectral
density (PSD) using fast Fourier transform (FFT) to estimate
the power distribution. In addition, the low-frequency com-
ponent (LF, 0.04–0.15 Hz) indicating sympathetic nervous
system activity and the high-frequency component (HF, 0.15–
0.40 Hz) indicating parasympathetic nervous system activity
were calculated. For each epoch, obtained the ratio of LF to
HF. For nonlinear domain analysis, the sympathetic index,
cardiac sympathetic index (CSI), and the parasympathetic
index, cardiac vagal index (CVI), were calculated using a
Lorenz plot [11].

H. Classification

The classification task was to estimate normal or abnormal
braking based on the psychological signals recorded from each
participant. Therefore, we classified it into two classes using
Support Vector Machine (SVM).

To measure the classifier’s performance, the data was di-
vided into two parts with training and testing and to report
performance. k-fold cross-validation (k = 10) was performed
on the data set; the data set was randomly divided into k
partitions. Then, k− 1 partitions were used to fit the learning
model, and the remaining partition was used to validate the
model; this process was repeated k times, and each time using
a different partition to validate the model.

III. RESULTS

A. EEG Spectrogram and LF/HF Ratio of Heart Rate Interval

The 2–47 Hz spectrogram of the EEG and the LF/HF ratio
of the heartbeat interval were calculated [7]. These results are
shown in Figs. 5 and 6.

The EEG spectrograms were averaged over all experimental
participant (sub) trials during normal and abnormal conditions.
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Fig. 5. Spectrograms of normal (left) and abnormal braking (right) are shown for each experimental participant

Fig. 6. The LF/HF ratios of the heart rate intervals during normal and abnormal
braking are shown in box plots for each participant.

The figure’s black vertical line (t = 0) indicates the brake
timing, and the black dotted line (t = 2) indicates the
interval used to extract the features. In sub7, sub12, sub13,
and sub14, ERD was observed at 8–16 Hz before and after
braking (−2 ≤ t ≤ 2), especially during abnormal braking.
Furthermore, in sub7, sub9, sub12, sub13, sub14, sub15,
and sub16, ERS was observed at 2 to 8 Hz after braking
(0 ≤ t ≤ 2) during abnormal braking.

Fig. 7. Average percentage of correct answers for 10-segment cross-validation
of SVM

The LF/HF ratio was calculated from the heart rate intervals
of each experimental participant (sub) and each trial for normal
and abnormal braking, respectively. In sub7, sub12, sub13,
sub14, sub16, and sub17, all trials’ mean LF/HF ratio was
higher during abnormal braking than during normal braking.
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B. Estimation of Abnormal Braking with SVM Using EEG and
Heart Rate Interval Features as Input

The features calculated from the EEG and heart rate
intervals for each trial were used to perform a two-class
classification of abnormal braking estimation by SVM. Fig. 7
shows the average accuracy after 50 trials of 10-segment cross-
validation within the experimental participants. In the figure,
the x-axis shows the participant number, and the y-axis shows
the average accuracy. Perfect classification means that the
accuracy is equal to 1, and 0.5 means random performance.
Of the nine participants in the experiment, four achieved an
average accuracy of 80% or higher.

IV. DISCUSSION

A. EEG spectrogram and LF/HF Ratio of Heart Rate Interval

The EEG and heart rate intervals responded differently to
normal and abnormal braking. The EEG spectrogram showed
that ERD in the alpha band (8–13 Hz) tended to be induced
before and after braking (−2 ≤ t ≤ 2), especially during
abnormal braking. From the heart rate interval, the ratio of
LF to HF tended to be higher during abnormal braking.
Local alpha-band (8–12 Hz) ERD is a response to unpleasant
emotions [12]. In addition, sympathetic and parasympathetic
nervous system activity (degree of tension) can be assessed
from the ratio of LF to HF, with a higher LF/HF ratio
being associated with mental stress [13], [14]. These studies
suggest that the experimental participants felt uncomfortable
and stressed in response to the brake abnormality, which
induced alpha-band ERD in the EEG and a larger LF/HF
ratio in the heartbeat interval. Therefore, it might be possible
to estimate abnormal braking by using the differences in the
characteristics of these EEG and heartbeat intervals.

B. Estimation of Abnormal Braking with SVM Using EEG and
Heart Rate Interval Features as Input

Using the features calculated from the EEG and heartbeat
intervals of one trial (Table I), two-class discrimination for
abnormal braking estimation was performed by SVM, and
four of the nine experimental participants achieved an average
correct classification rate of 80% or higher. This suggests that
it is possible to estimate the driver’s abnormal braking by using
the physiological signals before and after the braking timing.

However, the classification results varied among the ex-
perimental participants. This may be because single-channel
(Pz-electrode) EEG was used for feature extraction. The Pz-
electrode did not reflect enough spatial features for dis-
crimination due to the displacement of the head cap during
the experiment. Therefore, features should be extracted from
multiple electrodes in future studies. For example, the filter-
bank common spatial pattern method can be considered [15]
and causal relationships between EEG electrodes obtained
by multivariate autoregressive models can also be used as
features for discrimination [16]. We will investigate these
feature extraction methods to discriminate abnormal braking
with higher accuracy and study, based on the results obtained

in the simulator, applying these features to EEG and heart rate
intervals recorded while riding in a real car.
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