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Abstract—This paper proposes two enhancements to the con-
ventional speaker diarization methods for speech-based Montreal
cognitive assessments (MoCA). The enhancements address the
technical challenges of MoCA recordings on two fronts. First,
multi-scale channel interdependence speaker embedding is used
as the front-end speaker representation for overcoming the
acoustic mismatch caused by far-field microphones. Specifically,
a squeeze-and-excitation (SE) unit and channel-dependent at-
tention are added to Res2Net blocks for multi-scale feature
aggregation. Second, a sequence comparison approach with a
holistic view of the whole conversation is applied to measure the
similarity of short speech segments in the conversation, which
results in a speaker-turn aware scoring matrix for the subsequent
clustering step. Evaluations on an interactive dialog dataset for
MoCA show that the proposed enhancements lead to a diarization
system that outperforms the conventional x-vector/PLDA systems
under language-, age-, and microphone mismatch scenarios.
The results also show that the speaker-turn timestamps can be
hypothesized, suggesting that the proposed enhancements are
amendable to datasets without speaker timestamp information.

I. INTRODUCTION

Cognitive tests are tools for evaluating the cognitive capabil-
ities of humans. Montreal cognitive assessments (MoCA) [1]
is a widely used test for detecting mild cognitive impairment
(MCI) and Alzheimer’s disease (AD) in older adult. Studies
have found that the irregularities due to MCI and AD will
appear in patients’ speech [2]. Because a MoCA session
involves the spoken dialogs between an assessor and a patient,
it is essential to perform speaker diarization to extract the
utterances spoken by the patients as a first step towards the
efficient analysis of the patient’s speech.

Speaker diarization is the process of partitioning an input
audio into homogeneous segments according to the speaker
identities. It answers the question of who spoke when. In
general, the diarization process consists of the following steps.
First, a voice activity detector (VAD) is applied to remove
non-speech parts from the input audio. Next, speech regions
are uniformly partitioned into short overlapping segments.
After that, the segments are mapped into a fixed-dimensional
feature space by a speaker embedding network such as the x-
vector network [3], [4]. Then, a similarity matrix is produced
by computing the probabilistic linear discriminant analysis
(PLDA) scores [5], [6] between each pair of segments. Finally,
agglomerative hierarchical clustering (AHC) is applied to the

similarity matrix to obtain the diarizaion results.
The MoCA recordings present special challenges to speaker

diarization. Conventionally, researchers of speaker embeddings
focused on long utterances (over 5s). However, the MoCA
tests consist mainly of short utterances in interactive dialogs.
It is difficult to extract sufficient information for discriminat-
ing speakers. This problem is exacerbated by the fact that
the interactive dialogs have backchannel cues and frequent
changes in speaker turns, which lead to a high probability of
missing the speaker change points. An essential requirement of
MoCA tests is that the recording devices should not disturb or
affect the patient during a recording session. Ideally, the patient
should not know the existence of the devices. Therefore,
in practice, MoCA sessions use far-field microphones for
recording. But this will cause microphone mismatch issues
because diarization systems are typically trained on speech
recorded by close-talking microphones. The mismatch calls for
a more robust speaker embedding method that is less sensitive
to the microphone types.

Agglomerative hierarchical clustering [7] is one of the
most widely used clustering approach to speaker diarization.
Bayesian information criterion is usually used to estimate
which couple of clusters should be merged at each agglomer-
ative iteration. This leads to a high computational cost when
the number of data points increases. Also, the performance
of AHC heavily depends on the choice of the distance metric
[8]. In contrast, spectral clustering (SC) [7] does not require a
statistical metric to determine whether two clusters should be
merged. Previous researches have applied SC to infer speaker
clusters and achieved good performance [9], [10], specifically
in speaker diarization task [11].

This work aims to enhance our age-invariant diarization
system [12] for speech-based cognitive assessments. A speaker
embedding extractor, CE-Res2Net [13], is used to produce
multi-scale channel interdependence speaker embeddings as
front-end representations. Instead of PLDA, a long short-
term memory (LSTM) scoring model [14] trained on the
sequential information across short speech segments is applied
for similarity measure. The resulting diarization system was
applied to a MoCA dataset comprising 469 older adults,
including healthy individuals and patients with mild to major
neurocognitive disorders (NCDs). It was found that the en-
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Fig. 1. Structure of the CE-Res2Net and the SE-based Res2block. {ht}Tt=1

denote the frame-level features. T is the utterance length. ĥt denotes the last
frame-level convolutional layer’s output.

hanced embedding can overcome the acoustic mismatch due
to the far-field microphones and that the LSTM model can
leverage the ground-truth speaker-turn information in training
data or the hypothesized timestamps in the MoCA data.

II. DIARIZATION SYSTEM OVERVIEW

A. Kaldi X-Vector Networks

X-vector is a speaker embedding approach based on deep
neural networks (DNN), which has demonstrated good perfor-
mance in both speaker recognition [3] and speaker diarization
[4]. In Kaldi x-vector networks [15], MFCCs are extracted
and fed to time-delay layers [16] for frame-level processing.
Then, a statistics pooling layer aggregates over the frame-level
representations at the last time-delay layer into a segment-level
representation, followed by two fully connected layers and a
softmax layer to output the posterior probabilities of speakers.
The penultimate layer’s outputs form the speaker embeddings
called x-vectors.

B. PLDA Scoring and AHC

The x-vector/PLDA/AHC framework has been widely used
in speaker diarization systems [8], [12], [17]. The AHC is an
unsupervised clustering and merging method. We performed
PLDA scoring on all pairs of segments (x-vectors) for each
recordings. The PLDA scores were then used as input to the
AHC algorithm for classifying speech segments by speaker
identities. In this work, the baseline systems were conducted
based on this framework.

III. PROPOSED DIARIZATION SYSTEM

A. Channel-interdependence Enhanced Res2Net

The channel-interdependence enhanced Res2Net (CE-
Res2Net) [13] was designed for tackling the problems of
environmental noise and reverberation distortion in far-field
speaker verification. Because the same problems exist in
MoCA recordings, in this work, we applied CE-Res2Net for
speaker embedding. The configuration of the CE-Res2Net is
shown in Fig. 1. The squeeze-and-excitation (SE) unit [18] is
placed before the convolutional operations of the Res2block,
which rescales the channel activations and facilitates the
convolutional operations to learn multi-scale features.

In conventional speaker embedding, a self-attentive pooling
layer [19], [20] assigns a weight et for each frame-level
vector ht ∈ RC , where C is the number of channels in
the last convolutional layer. The weights et’s are the output
of a trainable network whose input is ht’s. However, this
kind of mechanism assumes that all channels are of equal
importance. To explore the importance of individual channels,
the CE-Res2Net uses channel-dependent attentive pooling [21]
to compute a scalar score et,c for each channel and each
frame-level vector ĥt at the last convolutional layer’s output.
Therefore, in Fig. 1, given ĥt, the attention network computes

et,c = υ
T
c f(Wĥt), c = 1, . . . , C, (1)

where υc and W are trainable parameters and f() is a non-
linear function such as ReLU. et,c is then normalized across
time by a softmax function:

wt,c =
exp(et,c)∑T
τ=1 exp(eτ,c)

, c = 1, . . . , C. (2)

Given a set of channel-dependent weights wt,c, the weighted
average of channel c can be obtained:

µ̂c =

T∑
t=1

wt,cĥt,c. (3)

The weighted mean vector is µ̂ = [µ̂1, µ̂2, . . . , µ̂C ]
T. Similar

to the self-attentive pooling, the elements of the weighted
standard deviation vector σ̂ = [σ̂1, σ̂2, . . . , σ̂C ]

T can be
computed as follows:

σ̂c =

√√√√ 1

T

T∑
t=1

wt,cĥ2t,c − µ̂2
c , c = 1, . . . , C. (4)

By concatenating the weighted mean vector µ̂ and the
weighted standard deviation vector σ̂, the output of the
channel-dependent attention pooling is obtained.

B. LSTM-Based Similarity Measurement

Although PLDA scoring is a widely used method for quan-
tifying the similarity between short speech segments (typically
1.5s) in speaker diarization systems, each PLDA score is
based on the speaker embeddings of two short segments only,
ignoring the remaining segments in a conversation. Because of
the nature of conversations, each speaker will likely produce
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a consecutive sequence of short segments in a conversation,
i.e., neighboring segments have a higher chance of being
produced by the same speaker. Therefore, instead of treating
the segments independently, as in PLDA scoring, we should
have a more holistic view of the segments. This notion leads
to the LSTM-based scoring in [14], which aims to capture the
sequential information across the segments.

Given a conversation, we obtain a sequence of speaker em-
beddings X = {x1, . . . ,xt, . . . ,xT }, where xt represents the
t-th segment’s embedding and T is the number of segments.
Each embedding, say xt, is concatenated with all the other
embeddings to form a vector sequence of double dimension:

Xt =
{[

xt
x1

]
, . . . ,

[
xt
xt

]
, . . . ,

[
xt
xT

]}
. (5)

To exploit the temporal information in Xt, it is fed to a Bi-
LSTM network [22] to produce the output:

St = [St1, . . . , Stt, . . . , StT ]

= fLSTM

([
xt
x1

]
, . . . ,

[
xt
xt

]
, . . . ,

[
xt
xT

])
.

(6)

The vectors St, t = 1, . . . , T , are then stacked row-wise to
form a scoring matrix S. By using Xt in Eq. 5 as the input
to the LSTM, each LSTM score in St depends not only on
two embeddings but also on all other embeddings and the
sequential information in the concatenated vectors.

The basic idea of the method is to learn a reference
similarity matrix, comprising blocks of ones and zeros. A
‘1’ in the (i, j) entry of the reference matrix means that the
i-th and j-th segments are produced by the same speaker;
otherwise, it is a ‘0’. The matrix is formed from the speaker
labels and timestamps of who spoke when in the training data,
which is used as the labels for training the LSTM network.

In [14], a K-fold cross validation was applied to the
Callhome dataset because timestamped speaker labels are
avaliable in Callhome. LSTM scoring can leverage the times-
tamp information about who spoke when in the training data.
The diarization performance and the impact of utilizing both
speaker labels and timestamp information are revealed in
Section V.

C. Spectral Clustering

Spectral clustering (SC) can be viewed as graph cuts [7].
The basic idea is to use the spectrum (eigenvalues) of an
affinity matrix to perform dimension reduction. The general
process of spectral clustering consists of three steps. First,
a similarity graph based on all data points is constructed.
Second, the data points are embedded on a low-dimensional
space (spectral embedding), using the eigenvectors of the
graph Laplacian. Third, a classical clustering algorithm (e.g.,
K-means) is applied to partition the embeddings.

Specifically, given a scoring matrix S ∈ Rn×n with ele-
ments Sij ≥ 0 and Sii = 0 ∀ i, we consider Sij as the
weight of the edge between nodes i and j in an undirected
graph. Then, we compute a Laplacian matrix L = D−S and

Fig. 2. Collection of JCCOCC MoCA Cantonese Speech Corpus.

perform the following normalization:

Lnorm = D− 1
2LD− 1

2 , (7)

where D is a diagonal matrix with Dii =
∑
j Sij . Next,

we select the number of clusters k and take the k smallest
eigenvalues λ1, . . . , λk and their corresponding eigenvectors
u1, . . . ,uk from Lnorm to form a matrix U = [u1, . . . ,uk] ∈
Rn×k using u1, . . . ,uk as columns. Finally, we apply the K-
means algorithm to cluster row vectors y1, . . . ,yn in U to
form k classes, where yi ∈ class k indicates that segment i
belongs to speaker k.

IV. EXPERIMENTAL SETUP

A. MoCA Cantonese Speech Corpus

The JCCOCC Montreal Cognitive Assessment (MoCA)
Cantonese Speech corpus was collected by the CUHK Jockey
Club Centre for Osteoporosis Care and Control. In the corpus,
a MoCA test was conducted for each participants. There are
469 participants (both genders), each having an interactive spo-
ken dialog session with an assessor with an average duration
of 26 minutes. The participants cover an age range of 72–
100. The recordings were captured in a quiet office by two
smartphones (iPhone 6 and Samsung Galaxy S6) placing at a
distance from the participant, as shown in Fig. 2. All of the
469 conversations were used in this work.

B. Evaluation Data

Among the 469 MoCA recordings, 256 (named MoCA-
256) have been manually transcribed, and they were used for
evaluating the performance of different diarization systems.
The total duration of the evaluation data is 103.5 hours, of
which the speech duration of the assessors and the participants
are 33.8 hours and 18.6 hours, respectively.

C. Training Data for Speaker Embedding Networks

In the experiments, the x-vector extractors and the CE-
Res2Net were trained on the National Institute of Standards
and Technology (NIST) Speaker Recognition Evaluations
(SREs) and the Switchboard (SWB) datasets, including SRE
2004, 2005, 2006, 2008, SWB2 Phases 1, 2 and 3, SWB
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TABLE I
SOURCE OF DATA FOR TRAINING THE X-VECTOR EXTRACTORS (KALDI)

AND CE-RES2NET.

Data Source #Speakers #Hours #Utterances
SRE 2004–2008

SWB and augmentation 4,979 2,789 62,151 (clean)
184,533 (aug.)

TABLE II
DIARIZATION PERFORMANCE OF THE BASELINE SYSTEMS (BASED ON

MOCA-256). THE SRE DATA WAS USED TO TRAIN THE PLDA MODELS.

System Architecture Performance Metrics (%)
DER MS FA SE

Kaldi x-vectors + PLDA + AHC 7.37 2.7 1.8 2.9
CE-Res2Net + PLDA + AHC 6.86 2.7 1.8 2.4

Cellular1, and SWB Cellular2. To obtain robust embeddings
for diarization, we followed the data augmentation procedure
in the Kaldi recipe and roughly doubled the size of the original
clean data, i.e., using the room impulse responses (RIR) [23]
and the MUSAN datasets [24] to create room reverberation
and additive noise, respectively. Note that short utterances
(number of frames less than 400) and speakers with less than 8
utterances were excluded. The statistics of the data for training
the speaker embedding networks are shown in Table I. We
followed the Kaldi’s Callhome recipe1 to train the speaker
embedding networks.

D. Training Data for Similarity Measurement Models

To investigate the performance of LSTM scoring, in addi-
tion to the 256 transcribed recordings, we also utilized the
remaining unlabeled2 213 MoCA recordings (called MoCA-
213) as in-domain data to train the scoring models. Because
information of speaker-turn timestamps is required for training
the LSTM scoring models, we hypothesized the timestamped
speaker labels of MoCA-213 in our experiments. In addition,
we also used the Callhome portion of NIST SRE 2000 as
out-of-domain data for training. Callhome3 is a widely used
telephone speech dataset containing 500 sessions with a total
duration of 18 hours. The number of speakers per session
varies from 2 to 7. Note that timestamped speaker labels are
available in Callhome. Therefore, we used it to train both the
LSTM and PLDA models for performance comparison.

To train the LSTM models, we partitioned a long con-
versation into 300-second blocks (i.e., T = 400 in Eq. 6)
and created a T × T reference matrix for each block. The
partitioning is to ensure enough temporal information in the
blocks without excessive burden on computation resources.
During scoring, the same partitioning was applied to the test
conversations.

1https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome diarization/v2
2In this work, the term “unlabeled” means there is no annotation, such as

speaker labels and timestamps of who spoke when in the dataset, i.e., it only
has audio files.

32000 NIST Speaker Recognition Evaluation (LDC2001S97), Disk-8.

E. Experimental Settings
For SRE and SWB data, we used Kaldi’s energy-based voice

activity detection (VAD) to remove silence regions. For the
JCCOCC MoCA data, we used the ASpIRE speech activity
detector (SAD).4 The reason for using two different VADs
is that SRE and SWB contain clean telephone conversations.
The signal-to-noise ratios are very high, and Kaldi VAD can
do a good job. On the other hand, the interactive dialogs in
JCCOCC MoCA were collected by smartphones placing far
away from the patients, causing lower signal-to-noise ratios.
As a result, a DNN-based VAD that is more robust to noise
was used for silence removal.

A sliding window of 1.5s with 0.75s shift was used to
extract the embeddings in the speech regions of each con-
versation. Speech regions less than 1.5s were ignored. For
each segment (or embedding), we computed a sequence of
23-dimensional MFCCs using a sliding window of 25ms with
a frameshift of 10ms; the MFCCs were then presented to the
speaker embedding network to extract a speaker embedding
vector.

We followed the configuration of CE-Res2Net described
in [13]. 192-dimensional speaker embeddings were extracted
from the affine layer’s output after the statistics pooling layer.
In addition, the LSTM-based scoring model in our experiments
consists of two Bi-LSTM layers (384–384), followed by two
dense layers (64–1). Each Bi-LSTM layer has 384 nodes
including 192 forward nodes and 192 backward nodes. The
first dense layer has 64 nodes with ReLU activation. The
output layer has one node with sigmoid activation, which gives
similarity scores between 0 and 1.

In general, a stopping threshold is needed in the clustering
algorithms. However, because the number of speakers per
recording is known, such stopping threshold is not needed in
our case.

F. Performance Metrics
We reported the diarization error rate (DER) [25] of dif-

ferent systems, which is a common performance metric for
speaker diarization. DER is the sum of the duration of missed
speech (MS), false alarm (FA), and speaker error (SE) divided
by the total duration:

DER =
Dur(MS) + Dur(FA) + Dur(SE)

Total Duration of Reference Speech
. (8)

In accordance with other studies [4], [14], [26], we allowed
a non-scoring collar of 0.25s around the reference segment
boundaries and ignored the overlapped segments. Because MS
and FA are caused by VAD errors, we may use SE to compare
performance if the same VAD was used for all systems.

V. EXPERIMENTAL RESULTS

First, we constructed two baseline systems based on the
evaluation set (MoCA-256), i.e., using Kaldi x-vector networks
and CE-Res2Net for embedding extraction and PLDA for sim-
ilarity measures. We used SRE data (without augmentation)

4https://kaldi-asr.org/models/m4
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TABLE III
DIARIZATION PERFORMANCE ACHIEVED BY DIFFERENT SIMILARITY MEASURES BASED ON DIFFERENT TRAINING DATA AND LABEL INFO.

Similarity Measurement Clustering
Algorithm

Performance Metrics (%)
Case Model Training Data Label Info DER MS FA SC

1 PLDA Callhome Speaker labels
(Ground truth) AHC 7.72 2.7 1.8 3.3

2 LSTM Callhome Timestamped speaker labels
(Ground truth) AHC 6.89 2.7 1.8 2.4

3 LSTM Callhome Timestamped speaker labels
(Ground truth) SC 6.60 2.7 1.8 2.1

4 LSTM MoCA-256
(5-fold)

Timestamped speaker labels
(Ground truth) AHC 5.95 2.7 1.8 1.5

5 LSTM MoCA-256
(5-fold)

Timestamped speaker labels
(Ground truth) SC 5.75 2.7 1.8 1.3

6 LSTM MoCA-213 Timestamped speaker labels
(Hypothesized) AHC 6.23 2.7 1.8 1.8

7 LSTM MoCA-213 Timestamped speaker labels
(Hypothesized) SC 6.12 2.7 1.8 1.7

for training the PLDA models. Table II shows the diarization
performance of the baseline systems. The results based on
the evaluation set (MoCA-256) show that CE-Res2Net can
produce better embeddings and achieve a lower DER. There-
fore, we only used CE-Res2Net for embedding extraction in
subsequent experiments (see Table III).

To improve diarization performance, we replaced the con-
ventional PLDA backend with LSTM scoring. We employed
in-domain (e.g., MoCA) and out-of-domain (e.g., Callhome)
data for training the models. Moreover, the in-domain data
with hypothesized labels were utilized. We also applied differ-
ent clustering algorithms (e.g., AHC and SC) for comparisons.
The diarization performance is given in Table III. In Case
4 and Case 5, the LSTM models were trained using the
labeled in-domain data. Specifically, 5-fold cross-validation
was conducted to estimate the performance, i.e., the evaluation
set (MoCA-256) was randomly partitioned into five equal-
sized subsets. A subset was retained as the test data while
the remaining four subsets were used for training the LSTM
model. The procedure was repeated five times, and each
subset was used once as the test data. After that, the 5-
fold test results were combined to calculate the DER. In
contrast, the LSTM models in Case 2 and Case 3 were trained
using the labeled out-of-domain data (Callhome). In Case 6
and Case 7, the unlabeled in-domain data (MoCA-213) were
used to train the LSTM models. Note that, the corresponding
labels (i.e., timestamped speaker labels) of MoCA-213 were
hypothesized by the baseline system (CE-Res2Net + PLDA)
in Table II. Therefore, the training in Case 6 and Case 7 is
semi-supervised.

The results based on the evaluation set (MoCA-256) demon-
strate that spectral clustering outperforms the AHC in all
cases. The in-domain 5-fold cross validation with ground-
truth labels in Case 5 achieves the lowest DER. In Case
1, the lack of training data in Callhome may cause poorer
performance than the baseline (Table II). Case 2 and Case 3
achieve performance comparable with the baseline even with
less training data, which demonstrate the benefit of using the

timestamp information in Callhome. We utilized unlabeled in-
domain data to train the LSTM models in Case 6 and Case
7, and both DERs are lower than the baseline in Table II,
demonstrating the effectiveness of learning representations
from in-domain data. Note that, the unlabeled in-domain data
(MoCA-213) cannot be used to train the PLDA model because
we cannot be sure the same speaker exists in another MoCA
recording.

VI. CONCLUSIONS

In this paper, we propose a speaker diarization system for
speech-based MoCA recordings. The system incorporates a
CE-Res2Net embedding extractor and an LSTM-based scoring
model. To obtain better speaker embeddings, the CE-Res2Net
exploits the interdependence between the channels in the
last convolutional layer. The LSTM model, which learns
the speaker turn patterns in MoCA recordings, substitutes
the conventional PLDA for similarity measures. Experimental
results based on MoCA data show that by leveraging both
speaker labels and timestamp, the LSTM scoring model trained
on in-domain or out-of-domain data performs better than the
PLDA model. While LSTM scoring requires the timestamp
information about who spoke when in the training data, results
show that the LSTM model can tolerate some errors in the
timestamps, suggesting that this scoring approach can lever-
age unlabeled training data via hypothesizing the timestamp
information.
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