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Abstract—Cardiovascular diseases are the leading cause of
death from noncommunicable diseases worldwide, among which
arrhythmias are a common manifestation. Feature extraction is
an important part of arrhythmia classification algorithms. Most
traditional classification algorithms rely on manual design and
extraction of features. In order to improve the efficiency of
feature extraction and reduce manual participation, this paper
presents a novel and efficient feature extraction framework based
on sparse autoencoder, which aims to extract high-dimensional
and sparse features through two sparsity regularizers. Features
obtained by the autoencoder can be exploited by different
classifiers. Experimental results on the MIT-BIH database show
that the classification performance of the proposed approach
outperforms most of the state-of-the-arts.

I. INTRODUCTION

Cardiovascular diseases are the leading cause of death from
noncommunicable diseases worldwide, among which arrhyth-
mias are a common manifestation. About 80% of sudden
cardiac deaths are the result of ventricular arrhythmias, which
can lead to sudden death or progressive heart failure [1]-[2].
Therefore, accurate and rapid determination of arrhythmias is
of great importance. The diagnosis of heart rate arrhythmias
mainly relies on electrocardiogram (ECG), and the automatic
analysis and diagnosis system of ECG greatly reduces the
workload of physicians.

The major steps of ECG-based arrhythmia classification
include feature extraction and classification [3]. Regardless
of supervised or unsupervised classification methods, fea-
ture extraction plays a crucial role. Various features (e.g.,
time domain features [4], frequency domain features, wavelet
morphology features, Stockwell transform (ST) features [5],
Hermitian coefficient features [6] ) can be exploited to achieve
effective features. For example, the RR interval, which is
the time between two consecutive heartbeat peaks, is one of
features commonly used in this classification task. Liet et al.
adopted morphological features to identify ECG arrhythmias
[7]. Many researchers have exploited multiple features in clas-
sification. Li et al. employed kernel independent component
analysis (ICA) and discrete wavelet transform (DWT) to obtain
multi-domain features [8].

Besides traditional features aforementioned, some novel
techniques have also been introduced to analyze ECG signals.

Kamath C. et al. applied the Teager energy operator (TEO)
to describe the characteristics of nonlinear components in
both time and frequency domains [9]. The main advantage of
TEO is that it models the energy of the source that generates
ECG signals, rather than that of signals themselves. In this
way, any deviation from the regular rhythmic activity of a
heart is reflected in the Teager energy function, which is
useful when analyzing different classes of ECG signals. The
QRS complex reflects the changes in left and right ventricular
depolarization potential and timing. The first downward wave
in an ECG signal is the Q wave and the upward wave
is the R wave, followed by the downward wave as the S
wave. Medical analysis of ECG waveforms have revealed
that three parameters (i.e., position, width, and amplitude)
may be sufficient to describe a QRS waveform population.
Therefore, a location, width and magnitude model (LWM)
was developed in [10] to synthesize original ECG waveforms.
Then, parametric features of the synthesized heartbeats were
further used in subsequent classification.

Based on the above extracted features, researchers have
developed a series of supervised or unsupervised classification
models and algorithms, such as neural networks (NNs) [11],
k-nearest neighbor clustering [12], mixture-of-experts [13],
classification and regression trees [14]-[15], support vector
machines (SVMs) [16], probabilistic NN [17], recurrent NN
(RNN) [18] and pathforest [19]. However, such algorithms
are highly dependent on hand-crafted features or their com-
bination. With the advent of deep learning [20]-[21], many
researchers turn their focus to deep neural networks, that is
capable of fulfilling end-to-end feature extraction and classifi-
cation. X. Yin et al. employed one-dimensional convolutional
neural network (1D-CNN) to extract complex features from
ECG data, that are then fed to a bi-directional long short-
term memory (BILSTM) for classification [1]. H. Dang et al.
proposed a baseline network (network A) and a multi-scale
fusion CNN architecture (network B) based on network A to
automatically identify five different types of heartbeats [2].
It has been demonstrated in [2] that the multi-scale fusion
CNN architecture (network B) is slightly better than network
A due to the introduction of a convolution block consisting
of three convolution layers, which aggregate features from
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Fig. 1. Network architecture of the proposed AE

all the convolution branches. S. M. Jadhav et al. developed
a multilayer perceptron (MLP) feedforward neural network
model combined with a static back-propagation (BP) algorithm
to classify arrhythmia into two categories, normal and abnor-
mal, which guarantees the true estimation of the boundary of
complex decision-making [3].

In this paper, we propose an autoencoder (AE) architecture,
originally proposed for compressing data [22]. It is similar to
but more powerful than principal component analysis (PCA)
in terms of feature extraction. The encoder part of the AE
is able to learn a low-dimensional representation of ECG
signals, while its decoder part aims to reconstruct data by
ignoring “noise”. The differentiable representation of input
ECG learnt in an unsupervised way can be flexibly combined
with a variety of classifiers. To further enhance the sparsity
of extracted features, L1 regularization is also introduced into
the proposed architecture of the AE.

The paper is organized as follows. In Section II, we first
introduce the architecture of the proposed AE. Then, the sparse
optimization algorithm is developed. Experimental results are
presented in Section III to evaluate the effectiveness of the
proposed algorithm. Section IV concludes the paper.

II. SPARSE AE

A. Architecture

Fig.1 depicts the proposed network architecture, which
consists of preprocessing, encoder and decoder parts. In the
preprocessing, QRS waves are first located using the classical
Pan-Tompkins algorithm [23]. Then, each heartbeat of fixed
length is extracted, resulting in a number of input samples
of ECG signals. Assume that there are m labelled samples
in the training set {(x1, y1) , · · · , (xm, ym)}, where xi (i =
1, . . . ,m) represents a single QRS wave and yi ∈ {1, . . . , c}
is a given label corresponding to the heartbeat category. In this
paper, we focus on five classes of arrhythmia, i.e., normal (N),
left bundle branch block (L), right bundle branch block (R),
premature ventricular contractions (V) and atrial premature

complexes (A). ECG samples {xi}mi=1 are directly fed to the
encoder network, generating representative features, which are
further used in the decoder network to reconstruct segmented
ECG signals. The whole network is trained by minimizing
the reconstruction loss. Once the AE network training is
completed, representative features are employed as inputs to
train a classifier. More details regarding each part of the AE
are given in the following subsections.

Suppose that the AE network is composed by nl layers. In
the coding phase, the output of the l-th layer is given by

h(l) (xi) = σ
(
W(l)h(l−1) + b(l)

)
(1)

where σ(·) represents an activation function, W(l) ∈ Rsl×sl−1

and b(l) ∈ Rsl denote, respectively, the connection weight
matrix between two consecutive layers and the bias vector
associated to each unit in the l-th layer, sl represents the
number of units in the l-th layer. On the input layer, h(0) = xi.
In our architecture, σ(·) is always chosen as Sigmoid function.
The decoding part performs the inverse conversion of the
encoding process.

B. Sparse AE
To avoid trivial solutions, sparsity regularizers can be in-

troduced to the reconstruction loss. In practice, two ways are
under consideration.

1) KL divergence : The reconstruction loss of the AE
network is first formulated as

J (W,b) =
1

2m

m∑
i=1

∥∥∥h(nl) (xi)− xi

∥∥∥2
2
+

λ

2

nl−1∑
l=1

∥∥∥W(l)
∥∥∥2
F
,

(2)
where the first term represents the reconstruction error given
each training sample xi, while the second one is the weight
attenuation term, which is generally used to reduce the size
of weights and prevent the over-fitting. The weight decay
parameter λ controls the relative importance of these two
terms. The optimization of the network is achieved generally
by the stochastic gradient descent [24].
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TABLE I
PERFORMANCE EVALUATION

Heartbeat category AE(L1)+SVM AE(L1)+BP
Se (%) Sp (%) P + (%) Se (%) Sp (%) P + (%)

Nb 97.35 97.44 92.11 93.63 93.02 79.39
Lb 97.45 97.41 91.70 98.00 91.78 77.25
V b 97.93 97.28 90.80 98.74 91.65 76.13
Rb 95.74 97.89 92.73 89.78 94.22 82.99
Ab 100 97.12 80.20 78.11 94.89 63.86

Acc (%) 97.42 93.16

It is believed that high-dimensional but sparse representation
is useful in both compression and classification tasks. To this
end, given input xi, we first compute the activation value
a
(l)
j (xi) of hidden unit j in the l-th layer. For simplicity, in

practice, it can be set equal to Sigmoid function value, that
is the j-th element of h(l) (xi). Then, the average activation
value is given by

ρ̂
(l)
j =

1

m

m∑
i=1

a
(l)
j (xi). (3)

To make ρ̂j as small as possible, a sparsity limitation ρ is
further specified, which is close to 0 (e.g., ρ = 0.05 in our
experiments). Then, the KL divergence is exploited to evaluate
the sparsity of the whole network, yielding

JKL (W,b) = J (W,b) + β

nl−1∑
l=1

sl∑
j=1

KL
(
ρ

n
ρ̂
(l)
j

)
, (4)

where β controls the relative importance of the sparsity penalty
term, and

KL
(
ρ

n
ρ̂
(l)
j

)
= ρ log

ρ

ρ̂
(l)
j

+ (1− ρ) log
1− ρ

1− ρ̂
(l)
j

. (5)

2) L1 regularization : L1 regularizer employs L1-norm to
sparsify network weights, while the KL divergence aims to
locate insignificant units that contribute much less to the final
reconstruction than the other ones. Using L1-norm, the cost
function is defined as

JL1
(W,b) =

1

2m

m∑
i=1

∥∥∥h(nl) (xi)− xi

∥∥∥2
2
+
λ

2

nl−1∑
l=1

∥∥∥W(l)
∥∥∥
1
,

(6)
where

∥∥W(l)
∥∥
1

=
∑sl

i=1

∑sl−1

j=1

∣∣∣W (l)
ij

∣∣∣. Minimizing
JL1 (W,b) forces some weights equal to small values,
that can be directly discarded.

The AE network is trained by the back-propagation algo-
rithm [25], which involves the computation of gradients with
respect to W and b using different sparse regularizers.

C. Classification

Once representative features of training samples {xi} are
obtained by the AE network, classifiers can then be trained.
Two classes of classifiers are used in our experiments.

1) SVM : The basic idea of SVM is to find the best
separating hyperplane on the feature space, that maximizes the
gap of positive and negative sample margins. As suggested in

[8], genetic algorithm is also employed to optimize parameters
of the SVM classifier.

2) BP NN : In our experiments, a three-layer BP NN is also
exploited to classify ECG samples. Sigmoid function is still
chosen as activation functions in the network. The last layer
outputs the predicted probability of each category.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

In our experiments, we adopt the MIT-BIH Database [26]
for performance evaluation. This database consists of 48 two-
leads ECG recordings, each approximately half-hour long
for each record with sampling frequency 360 Hz. In the
preprocessing, a bandpass filter processed the signal to re-
duce interference, and dual-threshold processing was used to
segment the ECG into single heartbeat [23]. In the training
process, based on empirical values, λ and β are set equal to
0.004 and 4, respectively. The number of hidden layer units
in the encoder is 50 and 25.

B. Performance Evaluation

The classification performance of the proposed algorithm
are evaluated y four metrics: sensitivity Se, specifity Sp,
positive predictivity P+ and accuracy Acc

Se =
TP

TP + FN
(7)

Sp =
TN

TN + FP
(8)

P+ =
TP

TP + FP
(9)

Acc =
TP + TN

TP + TN + FP + FN
(10)

where TP , TN , FP and FN denote, respectively, the True
Positive, the True Negative, the False Positive and the False
Negative.

Experimental results obtained by different classifiers are
listed in Table I. It can be found that the sparse AE using
SVM achieves better Sp and P+. For example, P+ can be
improved, respectively, by 12.72%, 14.45%, 14.67%, 9.74%
and 16.34% for five heartbeat categories when using the
SVM classifier. The BP classifier achieves better Se in the
Lb and V b types of heartbeats. Overall speaking, the AE
network using the SVM classifier performs better in terms
of classification accuracy.
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACIES OF DIFFERENT ALGORITHMS

Heartbeat category AE(L1)+BP AE(KL)+BP ICA+BP DWT+BP LC-KSVD
Nb 95.04 93.44 88.14 58.24 87.45
Lb 98.32 96.72 76.01 66.13 92.71
V b 95.78 97.17 73.75 61.57 93.37
Rb 92.15 92.01 76.28 65.19 83.35
Ab 79.33 81.18 59.45 80.03 91.32
Acc 93.56 93.23 77.67 63.04 89.04

Heartbeat category AE(L1)+SVM AE(KL)+SVM ICA+SVM DWT+SVM CNN
Nb 98.38 95.83 96.82 83.56 86.46
Lb 98.09 96.27 92.07 61.34 94.81
V b 97.64 96.73 81.94 96.00 90.83
Rb 96.51 94.18 83.21 81.44 92.13
Ab 100.0 100.0 100.0 100.0 90.25
Acc 97.96 96.15 89.33 78.82 90.90

C. Performance Comparison of Existing Algorithms

In this set of experiments, classification accuracies Acc of
the proposed algorithm are compared with those of four state-
of-the-arts, including ICA [8], DWT [8], Label Consistent K-
Singular Value Decomposition (LC-KSVD) algorithm [27] and
CNN [2]. Except the LC-KSVD and CNN, the other feature
extraction methods are evaluated using both BP and SVM. In
our experiments, 10× 10-fold cross validation is employed.

Table II lists classification accuracies of five different types
of heartbeats (i.e., Nb, Lb, V b, Rb, Ab) using aforementioned
algorithms. For different types of heartbeats, the best results
are shown in bold. It can be seen that the average accuracy
of the proposed algorithm is better than the other approaches,
especially when the AE network is equipped with SVM as the
classifier. The average accuracy increases by at least 1.81%.
Experimental results also indicate that features extracted by the
AE using L1 regularizer are more effective in the classification
task.

IV. CONCLUSIONS

In this paper, an effective algorithm using sparse AE for
feature extraction has been proposed for arrhythmia classifi-
cation. Compared with the traditional methods of manually de-
signing and extracting features, it can fulfill automatic feature
extraction, which is capable of achieve higher classification
accuracy. Two sparsity regularizers have been introduced into
the architecture of the AE network. Experimental results
have demonstrated the superior performance of the proposed
algorithm over the state-of-the-arts.
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