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Abstract—Multiple object tracking is an open problem in
computer vision. Various studies have presented effective and
efficient architectures for object tracking and have paved the
way towards the construction and development of task-specific
assistive tools such as in animal behavior analysis or road
traffic monitoring. Despite the growing interest in computer
vision systems for animal behavior analysis, no such tools have
been developed for multi-animal detection specific to macaques.
In this study, we aim to develop a robust Japanese macaque
detection model. We also explore how transfer learning affects
the detection accuracy of the trained models. With a mean
AP50 of 83.17%, F1 score of 84%, and a mean IOUAP@50

of 70.27%, our Japanese macaque detection model pre-trained
on the MacaquePose dataset using YOLOv4 yielded the best
performance. Transfer learning from a related task increased
the mean average precision at IOU50 by 8% and significantly
reduced training convergence time.

I. INTRODUCTION

Behavioral studies involve the observation of interactions
between organisms in the environment. These observations
in animals, supported by evolutionary evidence, have led
to a deeper understanding of human evolutionary patterns.
Primates, our closest genetic relative, are the subject of many
studies aiming to map developmental and mutative patterns to
potentially understand human behavior and instincts. Wester-
gaard and Fragaszy [1] have observed in a troop of capuchin
monkeys a tradition of using tools such as rocks to open
foraged nuts in a group. Non-human primates have also been
observed to experience stress when subjected to relocation
and social isolation [2], and develop physiological signs of
depression such as arched postures and decreased movements
as consequences of subordination in troop [2], [3].

Collecting longitudinal data spanning years of the same
population is a common practice to establish behavioral find-
ings in monkey behavior research. Primatologists jot down
manually observed information of the monkey population and
often record videos along with it. With an extensive video
archive, performing a thorough review through frame-by-frame
analysis is time-consuming.

Current innovations in computer vision enable the de-
velopment of complex systems that may aid and fast-track
aggregation and analysis of visual data. Fast Region-based
Convolutional Neural Networks (Fast R-CNN) [4], introduced
in 2015, is an object detection architecture that jointly learns
classification and refinement of object proposals. The input is

passed on to multiple convolutional and max pooling layers.
Region proposals are then pooled and fed into fully connected
layers for object classification and bounding box estimation.
You Only Look Once (YOLO) [5]–[8] is another object
detection network that is currently widely used in different
studies and applications because of its swift and accurate
detection ability in most benchmark datasets. The main design
behind this network is the division of input into regions
and the prediction of bounding boxes and class probabilities
for each region. Detection modules are also performed at
different scales, increasing the ability of the network to handle
objects in largely varying sizes. Currently leading in object
detection benchmarks in terms of detection accuracy and
speed, EfficientDet [9] utilizes a weighted bidirectional feature
network with a customized compound scaling method. This
architecture uses EfficientNet [10] as its backbone network,
Bidirectional Feature Pyramid Networks (BiFPN) as its feature
network and shared a network for class and box prediction
towards the end. These methods have been trained and tested
on general object detection datasets such as COCO [11],
ImageNet [12], and Pascal VOC [13]. With the emergence
of robust architectures for general object detection, developing
stronger models for more specific tasks such as human tracking
or scene understanding has been made easier and possible.

In recent times, there has been a growing interest in the
specific field of computer vision methods for animal behavior
analysis [14]–[16]. However, for larger animals in the wild
with complex body structures and wide degrees of move-
ment freedom such as chimpanzees, gorillas, and macaques,
such systems have yet to be developed. Labugen et. al. [17]
proposed a novel visual dataset containing more than 13,000
images of macaques with instance and body key point labels.
They also presented a single-monkey pose detection model
using DeepLabCut [18].

In the field of primate research, trooping behavior and
relationships between other monkeys are topics of high interest
in this field. However, single-animal detection models such as
[17] require an additional level of processing to accommo-
date visual data containing multiple animals, which occurs
often. Motivated by current innovations in computer vision
to efficiently comb through extensive longitudinal visual data
through the automatic detection of target objects [19] and
the need to establish more findings in behavioral research of
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Japanese macaques, we contribute a robust monkey detection
model that is able to detect multiple instances of our target
species accurately. We experiment as well on the effect of
transfer learning to training convergence and the overall de-
tection accuracy of the trained models.

II. METHODOLOGY

Our goal in this work is to construct an accurate Japanese
macaque detection model. With this, we experiment on the
construction of robust multi-animal detection models as well
as inspect the effect of transfer learning from a large general
macaque dataset to our target species to the overall detection
accuracy. In this section, we will discuss the various datasets
and the object detection network used in our study.

A. Dataset

In our study, we used three different datasets with high scene
heterogeneity and disparity. First, we utilized the Macaque-
Pose dataset [17] comprised of 13,088 frames with 16,393
unique monkey instances. This dataset contains key point
and instance labels of various macaque species such as the
rhesus macaque, Japanese macaque, and the like. Each monkey
instance is annotated with 17 key points namely, nose and left
and right locations of the ears, eyes, shoulders, elbows, wrists,
hips, knees, and ankles. However, for this study, we instead
computed for the minimum bounding box of each instance and
used the resulting set of monkey boxes for experimentation.
We focused our subsequent training on Japanese macaques
using two datasets: our videos collected from monitoring a
troop of this species in the forests of Kinkazan, Miyagi, Japan
[20] and Youtube videos containing the target species. We
have a total of 3, 604 monkey boxes from recorded clips of a
troop of Japanese macaques in the wild. Videos were taken by
our collaborator from a lateral angle using a single handheld
camera. These recordings were collected by following the
individuals of interest, causing scene conditions to highly
vary at different times with little to no static reference frame
throughout the same clip. To reinforce the generalizability
of our model on Japanese macaque detection, we acquired
random videos of Japanese macaques from Youtube. Since
these were sourced from varying originators in different en-
vironments using different cameras, this set has more noise,
scene changes, and variations in image quality and resolution.
We have a total of 576 frames and 2,020 monkey boxes labeled
under this set. Figure 1 contains sample scenes from each
dataset and Table I shows the breakdown of each dataset
collected.

B. Monkey Detection using You Only Look Once (YOLOv4)

We trained a monkey detection model using YOLOv4
[7], [8]. This object detection framework is composed of
three modules: backbone, neck, and head. YOLOv4 uses
CSPDarknet-53 as its backbone network, as shown in Figure
2. This version of Darknet-53 reintroduces its residual blocks
as Cross-Stage Partial blocks (CSP) to mitigate the heavy
computational load that it usually requires. The receptive

TABLE I
DATASET CHARACTERISTICS

Dataset Description Frames Boxes
MacaquePose [17] species: various 13,088 16,393

(rhesus macaques, Japanese
macaques, etc.)
scenes: various

(zoo, hotsprings, etc.)
Ours [20] species: Japanese macaques 1,231 3,604

scenes: forest only
Youtube species: Japanese macaques 576 2,020

scenes: various
(zoo, snow, hotsprings, etc.)

multiple foreign objects

Fig. 1. Different scenes in the datasets: top row contains scenes from the
MacaquePose dataset [17], middle row contains scenes from our dataset [20],
and the bottom row contains scenes from the Youtube dataset. The high
variability of textures and colors in the scenes increases the complexity of
detection and spatial-based feature extraction.

fields are then enhanced using Spatial Pyramid Pooling (SPP)
[21] and parameters are aggregated from different backbone
levels using a Path Aggregation Network (PANet) [22]. The
resulting feature maps of the neck module are then passed
on to the YOLOv3 [6] layers to predict classes and the
bounding boxes of objects. YOLOv4 [7], [8] proposes new
data augmentation techniques such as mosaicking and cut mix,
aside from photometric and geometric distortions, to increase
the variability of the training images and the robustness of the
detection model.

1) Spatial Pyramid Pooling (SPP): Spatial Pyramid Pool-
ing (SPP) [21] is a pooling method where the input is
partitioned into divisions in different levels and aggregates
local features in them. This enables the processing of variable-
sized or variable-scaled images and consequently, reduces
over-fitting. Moreover, due to the features being pooled at
different scales, this method improves the flexibility or scale-
invariance of the overall network and generally increases its
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Fig. 2. The YOLOv4 Architecture [7], [8]. The input images are passed to
the backbone network, CSPDarknet-53, for feature extraction. Spatial Pyramid
Pooling (SPP) and a Path Aggregation Network (PANet) in the neck stage then
improves the robustness of detection by enhancing the receptive fields and
allowing for parameter-sharing across different backbone levels. Predictions
using the YOLOv3 [6] layers are then performed at different stages.

Fig. 3. Modified Path Aggregation Network (PANet) [22] for YOLOv4.
Information is propagated from the lower layers to the upper layers with
parameters from different backbone layer through a concatenation operator
[7], [8] .

detection ability.
2) Path Aggregation Network (PANet): A Path Aggregation

Network (PANet) [22] propagates accurate localization infor-
mation from the lower to the topmost layers which improve
the quality of the region proposals of the network. We used
a modified version of PANet where the shortcut connection is
replaced with concatenation, as shown in Figure 3.

3) Mish activation: We used Mish [23] as the activation
function in replacement of ReLU [24]. This function is given
by

fmish(x) = xtanh(softplus(x)) (1)

Similar to Swish [25], Mish is smooth, self-regularized, and
non-monotonic. Unlike ReLU [24], this function is contin-
uously differentiable which avoids singularities and allows
for smoother gradient-based learning with no side-effects. As
shown in Table II, Mish performs better with CSPDarknet-53
than ReLU on the MS COCO dataset.

Using these modules, we performed training in two stages.
The first stage involves training a general macaque detection
model using two versions of YOLOv4 on the MacaquePose
[17] dataset. We then utilized these as the base models
for Japanese macaque detection using our own dataset and
Youtube datasets on the used YOLOv4 architectures.

TABLE II
TEST PERFORMANCE OF CSPDARKNET-53 [7], [8] WITH ACTIVATIONS

RELU [24] AND MISH [23] ON THE MS COCO DATASET

Model Size Data Augmentation ReLU Mish
CSP-Darknet53 (512× 512) No 64.5% 64.9%
CSP-Dakrnet53 (608× 608) No - 65.7%

CSP-Darknet53+ (512× 512) Yes 64.5% 64.9%
PANet+SPP

III. EXPERIMENTS

In this section, we discuss the experiments performed for
monkey detection. Transfer learning has been observed to
provide better results when training models even on unrelated
tasks versus starting from scratch. We design our experiments
to analyze the changes in the detection accuracy when em-
ploying methods such as transfer learning and introducing
dataset variability. We staged our training into two phases:
general macaque detection and Japanese macaque detection
and split each dataset into 70% training, 20% testing, and
10% validation. This gives us the breakdown shown in Table
III. We performed all our experiments using an NVIDIA RTX
3090 GPU with 24GB memory.

TABLE III
BREAKDOWN OF EACH DATASET USED IN THE EXPERIMENTS

Dataset Training Validation Testing
MacaquePose [17] 9160 1312 2616

Ours [20] 862 123 246
Youtube 403 59 114

1) First Stage: Training a General Macaque Detection
Model on the MacaquePose Dataset: For this initial stage,
we computed for the minimum bounding boxes of each
monkey instance label in the MacaquePose dataset. We then
trained a general macaque detection model using the YOLOv4
architecture with a network size of (416x416) with batch and
subdivision sizes as 64 and 16, respectively. We set our learn-
ing rate to 0.001, momentum at 0.949, and decay at 0.0005. We
also enabled data augmentations with the following parameter
values: saturation at 1.5, exposure at 1.5, hue at 0.1, and
mosaicking enabled. For model validation during training, we
used the MacaquePose dataset. To measure the accuracy of our
trained detector, we used the testing set comprised of 2,616
frames with 3,517 corresponding boxes from the same dataset.

2) Second Stage: Training a Japanese Macaque Detection
Model on Our and Youtube Datasets: For the second stage,
we trained separate models on each training dataset using
the same validation set and the pre-trained general macaque
detection model as the starting point. We tested the trained
models at this stage on our testing set and the Youtube dataset
separately to inspect the generalizability of the model as well
as its accuracy in the primary dataset that we will be using
for our monkey tracking and behavioral research.

We performed another set of experiments to verify the
significance of transfer learning in the development of an
accurate monkey detection system. We trained these models
using three different initial weights: random, pre-trained on the
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COCO dataset, and pre-trained on the MacaquePose dataset.
Based on the results of this experimentation, we will observe
how transfer learning affects the overall detection accuracy
versus using randomly initialized weights.

YOLOv4 Parameters. For this stage, we used the general
monkey detection model trained using the original YOLOv4
architecture as the initial weights of the subsequent training
experiments and kept the same YOLOv4 parameters from
stage 1. The other hyperparameters such as learning rate,
momentum, and decay were kept at 0.001, 0.949, and 0.0005,
respectively.

IV. RESULTS AND DISCUSSION

In this section, we will present and discuss the results of
our experiments.

A. First Stage: General Macaque Detection

Initially, we trained YOLOv4 on the MacaquePose [17]
dataset. Shown in Table IV are the mean average precision
value at IOU50 (mAP50) of 90.92%, F1 score of 90%, and
mean IOU of 71.46% of the trained model.

TABLE IV
PERFORMANCE EVALUATION OF THE GENERAL MACAQUE DETECTOR (%)

Model MacaquePose
mAP50 90.92
Precision 91
Recall 89

F1 Score 90
mIOU 71.46

B. Second Stage: Japanese Macaque Detection

We used the general macaque detection model trained using
the original YOLOv4 in stage 1 as the initial weights of our
training experiments in stage 2. As shown in Table V, our
model achieved a mAP50 of 83.17%, F1 score of 84% and
meanIOU of 70.27% on our test set. With a high precision
score of 90%, the model seldom boxes incorrect objects.
Despite having large disparities in image resolution, scenes,
and monkey box sizes from the frames in our own video
dataset, our Youtube-trained model yielded an acceptably high
accuracy of 70.78% mAP50 on our test images.

TABLE V
PERFORMANCE EVALUATION (mAP50) OF THE TRAINED JAPANESE

MACAQUE DETECTION MODELS ON THE FRAMES IN OUR TEST DATASET

Training MacaquePose Ours Youtube
Validation Ours Ours Ours
mAP50 21.56 83.17 70.78
Precision 60 90 72

Recall 26 79 71
F1 Score 36 84 71

mIOU 39.29 70.27 55.77

We also tested on the Youtube test set to further check the
generalizability of our detection models trained on different
datasets. Similar with the previously-discussed results in Table
V, we achieved the following test results on our Youtube test

set on Table VI. The model trained on the Youtube dataset
achieved the highest mAP50 of 71.5% and mean IOU of
62.69%. The MacaquePose model trained with our validation
set yielded the lowest with mAP50 scores of below 30% on
both test sets.

TABLE VI
PERFORMANCE EVALUATION (mAP50) OF THE TRAINED JAPANESE

MACAQUE DETECTION MODELS ON THE YOUTUBE TEST DATASET

Training MacaquePose Ours Youtube
Validation Ours Ours Ours
mAP50 26.64 49.58 71.5
Precision 71 61 80

Recall 28 48 66
F1 Score 40 54 73

mIOU 48.83 45.9 62.69

Shown in Table VII is the test performance of the trained
models, using different initial weights, on our test set. The
model with pre-trained MacaquePose weights yielded the
highest detection performance at 83.17%. Training converged
faster using pre-trained weights than with randomized weights.
Shown in Figure 4 are the training loss and the validation
mAP50 plots of the training run using the random, pre-
trained on COCO [11], and pre-trained on MacaquePose
[17], respectively. Observing the behavior of the validation
accuracy plot across the different graphs, both the pre-trained
models yielded the best mAP a few hundred steps after the
first thousandth iteration. While both pre-trained models are
already showing a downward validation accuracy trend and a
training loss of less than 2 at the second thousandth iteration,
we still see an increasing trend on the model initialized with
random weights. This suggests a boost in the speed of training
convergence for models with pre-trained weights on a general
or a related task versus randomized weights.

Comparing the results of all the ablation studies performed
in this study, transfer learning from a more related task
improves the accuracy of the detection model and allows for
faster convergence.

V. CONCLUSION

In this paper, we proposed a new multi-instance detection
model for monkeys that can be used in different behavioral
researches that involve visual data. With a mean AP50 of
83.17% our system was able to accurately detect Japanese
macaques in varying environments and conditions. We also
show that transfer learning improves detection accuracy and
reduces training convergence time.

TABLE VII
PERFORMANCE EVALUATION OF THE TRAINED JAPANESE MACAQUE

DETECTION MODELS ON OUR TEST SET

Model Initial Weights mAP50 (%) F1 Score(%)
YOLOv4 random 75.4 77
YOLOv4 pre-trained 79.14 79

on MS COCO [11]
YOLOv4 pre-trained 83.17 84

on MacaquePose [17]
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Fig. 4. Training Loss versus Validation Accuracy (mAP50). The orange, blue,
and green graphs show the training loss and validation accuracy plots of the
run using randomized, pre-trained weights on the COCO dataset, and pre-
trained weights on the MacaquePose dataset, respectively. The orange-colored
graph starts at a loss of 1759.67. The blue-colored graph begins at a loss score
of 1646. The green-colored graph shows an initial loss of 5.1, significantly
lower than the first two above. Both pre-trained models yielded the highest
validation accuracy a few hundred steps after the first thousandth iteration,
with the latter leading by a few hundred iterations. While both pre-trained
models are already showing a downward validation accuracy trend and a
training loss of less than 2 at the second thousandth iteration, we still see an
increasing trend on the model initialized with random weights. This suggests a
longer training convergence time required for models with randomized weights
versus those pre-trained with a general or a related task.
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