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Abstract—Estimation of driving behaviors is an elemental
technology in a driving support system for a vehicle. For realizing
intelligent estimation of driver behaviors, many studies have
explored the use of machine learning methods mainly in a
supervised fashion that require a large amount of labeled driving
data. In this study, we hypothesize that the time-contrastive
learning (TCL) could be helpful for reducing the number of
labeled data for the supervised learning and numerically tested
it using a public data set. For this purpose, we constructed three
models to estimate driving behaviors from vehicle dynamics:
1) a naive linear classifier implemented by linear discriminant
analysis (LDA) model; 2) an LDA classifier combined with a
feature extraction process by the original TCL; 3) the same as
2) except the robust version of TCL was employed instead of the
original TCL. The results were not supportive to our hypothesis:
Model 1) showed better performance than the other models when
very few labeled data was available; and two models with TCL
outperformed the other without TCL for a considerable number
of labeled data. We conclude discussions on some limitations of
this study and open issues for the future.

I. INTRODUCTION

Estimation of driving behaviors is an elemental technology
in a driving support system for a vehicle. Even in encountering
drowsy driving and road rage, successful estimation of driving
behaviors enables the system to shift to automatic driving
mode swiftly and protect the drivers from critic accidents.
Driver behavior analysis is also beneficial for car insurance
industry to assess potential risks of their customers for pro-
viding fair insurance premiums.

For realizing intelligent estimation of driver behaviors,
many studies have explored the use of machine learning
methods mainly in a supervised fashion that require labeled
driving data [1], [2], [3], [4], [5], [6], [7], [8]. For improving
performance, a supervised approach usually requires a large
amount of data recorded in realistic driving situations. How-
ever, the acquisition of labeled data for events or behaviors is
often very costly or even infeasible.

In recent years, unsupervised learning has drawn increasing
attention from the computer vision community because it can
utilize unlabeled data efficiently for learning latent features,
which can be a good basis for transfer learning to various
tasks. Thanks to this property, unsupervised learning can be
very beneficial when a large amount of data is available
but only a quite small fraction of them are labeled. An

interesting approach of this direction in the computer vision
is unsupervised feature learning by maximizing distinction
between image instances [9]. A similar approach for time
series is the time-contrastive learning (TCL) that learns fea-
tures by maximizing discrimination among all segments in
a time series [10]. Theoretically, TCL combined with linear
independent component analysis (ICA) is equivalent to the
nonlinear ICA. In this study, we hypothesize that the analogy
can be transferred to a context of the estimation of driving
behaviors, and numerically tested it using a public data set.

II. METHODS

A. Problem Setting

We assume a situation where we have time-series data
with the length of T , D ≡ {x(t) ∈ ℜP }Tt=1, measured by
some device attached to a vehicle. Herein, we simply refer
to x(t) as a measurement (or measurement vector) with the
dimensionality of P . For a specific subset of the meaturements
(i.e. a labeled data set) Dl ⊆ D, any datum x(t) ∈ Dl is
associated with a class label y(t) ∈ {1, . . . ,K} indicating
a human-annoted category of driving behaviors (e.g. nomal,
drowsy, etc.). On the contrary, none of other measurements
(i.e. unlabelded data) x(t) ∈ D −Dl are associated with the
class label at all.

The goal of this study is to investigate whether or not
we can construct a model that can precisely estimate a class
label ŷ(t) corresponding to a new measurement x̂(t), based on
information about a given time-series D and their associated
class labels. Accordingly, the problem falls into a class of
semi-supervised learning except the features are given by time-
series.

B. Data Set

1) UAH-DriveSet: Instead of real driving experiments, we
employed a public data set named UAH-DriveSet [7] as a
benchmark for our study. The data was collected from six
different drivers (five males and one female), who were asked
to perform three different behaviors (normal, drowsy and
aggressive) on two types of public roads (motorway and sec-
ondary road). During the driving, a large amount of variables
were captured and processed by all the sensors and capabilities
of a smartphone and the data contains more than 500 minutes

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1363978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



!

1 2 … K1 … S-1 S

Measurements vector x(t)

Estimated by LDA

B
a

c
k
p

ro
p

a
g

a
ti
o

n
 l
e

a
rn

in
g

to
 p

re
d

ic
t 

 u
(t

)

Estimation of driving behavior y(t)Estimation of time-series fragment u(t)

Fig. 1. Overview of two-step model for estimating the driving behaviors.

of naturalistic driving with its associated raw data and addi-
tional semantic information (see more details at http://www.
robesafe.uah.es/personal/eduardo.romera/uah-driveset). In this
study, we extracted only four variables of speed, roll,
pitch and yaw, from the data set to assume a difficult
situation.

2) Preprocessing: In UAH-DriveSet, speed was measured
by a GPS sensor with the sampling rate of 1 Hz while the
others (i.e. roll, pitch and yaw) were measured by an
accelerometer with the sampling rate of 10 Hz. To resolve the
inconsistency of the sampling rate, time-series of speed was
up-sampled by ten times with linear interpolation so that all
variables had 10 Hz frequency after the preprocessing. Addi-
tionally, in order to reduce possible effects of high dynamic
ranges of the features, we linearly normalized the values for
each variable so that the distribution of each variable have zero
mean and unity standard deviation.

Finally, we defined x(t) as a collection of preprocessed
values of (speed, roll, pitch, yaw). Each class label y(t)
associated with x(t) ∈ Dl was defined as follows:

• y(t) = 1 if normal driving was performed at time t.
• y(t) = 2 if drowsy driving was performed at time t.
• y(t) = 3 if aggressive driving was performed at time t.

C. Estimation of Driving Behaviors

For estimating the driving behaviors based on both labeled
and unlabeled data, we considered a two-step model consisting
of unsupervised feature extraction followed by supervised
classification. In this section, we explain our implementation
of those steps (See the overview in Figure 1).

1) Feature Extraction by TCL: In the first step, non-linear
independent component analysis was executed to transform
a measurement x(t) into a task-independent feature vector
z(t) that can maximize the information content after the
transformation.

For this pupose, the time-contrastive learning (TCL) [10]
or Robust TCL [11] was employed in this study. TCL was
typically implemented by a multi-layer neural network with
multiclass logistic regression. The training data for TCL were

prepared in the following procedure. First, the measurement
time-series D was segmented into S fragments with the equal
length, each of which was indexed by s = 1, . . . , S. For each
x(t) ∈ D, its corresponding class label is given by u(t) = s
if x(t) was assigned to the s-th fragment. The neural network
was trained so as to approximate the mapping from x(t) to
u(t) by maximizing the cross entropy loss:

L = − 1

T

T∑
t=1

S∑
s=1

I(u(t), s) lnP (s|x(t)),

where I(·, ·) is the indicator function that returns 1 if two
arguments are the same and 0 otherwise; and P (l|x(t)) is
the output of the neural network expressing the probability
that x(t) belongs to the s-th fragment. After the training, the
values computed in the last hidden layer of the neural network
were used as the feature vector z(t) corresponding to x(t).
Theoretically, z(t) can be regarded as a mixing signal formed
by linear combination of statistically independent signals (See
theoretical details in [10]). Thus, z(t) is expected to contain
the same information content as the the independent signal.

The original TCL mentioned above is vulnerable to outliers,
which often happen in the real driving situation. To address
the issue, we also considered the use of Robust TCL [11]
as an alternative. The main difference between the original
and Robust TCLs is the objective function to train the neural
network. In Robust TCL, the objective function is replaced by
the γ-cross entropy, defined as follows:

L = − 1

γ
ln

 1

T

T∑
t=1

∑S
s=1 I(u(t), l)r(s,x(t))γ(∑S
s′=1 r(s

′,x(t))γ+1
) γ

γ+1

 ,

where r(s,x(t)) is the internal potential of the s-th output
unit in the neural network such that

r(s,x(t)) = exp(w⊤
s z(t) + bs)

and

P (s|x(t)) = r(s,x(t))∑L
s′=1 r(s

′,x(t))
.

ws is the weight vector between the last hidden layer and the
s-th output unit, and bs is the bias of the s-th output unit.

2) Classification: In the second step, a linear classification
was executed to transform the feature vector into the corre-
sponding driving behavior. For this purpose, we employed
a multiclass linear descriminant analysis (LDA) model, for
which the training data set consisted of a collection of feature
vectors z(t) associated with the labeled data x(t) ∈ Dl and
their corresponding class labels y(t).

III. RESULTS

To test the efficiency of feature extraction by TCL, we per-
formed numerical experiments and compared three conditions:

1) Naive-LDA: The model was trained by LDA without any
feature extraction process to estimate a class label of
driving behavior y(t) directly from a given measurement
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x(t). In other words, the feature extraction was done by
the identify function such that z(t) = x(t).

2) TCL-LDA: The model was trained by LDA to estimate a
class label of driving behavior y(t) from a feature vector
z(t), which is the output of a neural network trained by
the original TCL for a given measurement x(t).

3) RTCL-LDA: The model was the same as TCL-LDA
except Robust TCL was employed instead of the original
TCL.

For implementation of TCL, we employed a simple three-
layer neural network model with a single hidden-layer con-
sisting of 250 units. The number of fragments to generate the
training data set for TCL was set at S = 200.

To evaluate the performance achieved in these conditions,
we randomly assigned 80% of samples in UAH-DriveSet to the
training data set and the remaining 20% to the test data set.
Among the training data set, only n samples were randomly
selected and treated as the labeled data by associating them
with their corresponding class labels of driving behaviors;
and the remaining m (m ≫ n) samples were treated as
the unlabeled data in order to assume that the availability
of labeled data was extremely limited. Additionally, n varied
from 10 to 200 with increment of 10 to check the improvement
by increase in the number of labeled data. The accuracy and
the F1 score for the test data set was used as the performance
indices of each condition, and averaged over 100 independent
runs to reduce the sampling randomness.

Figure 2 shows the results of the performance comparison
among three models. Naturally, the performance was improved
more as the number of labeled data increased for all models.
In terms of comparison amond the models, Naive-LDA showed
better performance than the others when the number of labeled
data was 10. However, the difference almost disappeared
around 30 labeled data and two models including TCL (i.e.
TCL-LDA and RTCL-LDA) outperformed Naive-LDA when 70
or more labeled data were available. The difference between
TCL-LDA and RTCL-LDA was quite little for any condition.

IV. DISCUSSIONS & CONCLUSIONS

In this study, we hypothesized that nonlinear ICA imple-
mented by the original or its robust version of time-contrastive
learning could be helpful for reducing the number of labeled
data to realize an intelligent estimation of driving behaviors
from vehicle dynamics, and numerically tested it using a public
data set named UAH-DriveSet.

For this purpose, we constructed three models to estimate
driving behaviors: 1) a naive linear classifier implemented by
linear discriminant analysis (LDA) model; 2) an LDA model
combined with a feature extraction process by the original
TCL; 3) the same model as 2) except Robust TCL was
employed instead of the original TCL. However, the results
were not supportive to our hypothesis: Model 1) showed better
performance than the other models when very few labeled data
was available; the effectiveness of TCL became clearer as the
number of labeled data increased; and finally, two models with
feature extraction with TCL outperformed the other without

(a) Accuracy

(b) F1 score

Fig. 2. Performance comparison among three models: Naive-LDA, TCL-LDA
and RTCL-LDA. (a) accuracy and (b) F1 score were represented as the
performance indices. The solid lines and the error bars represents means and
standard deviations over 100 independent runs.

any feature extraction process for a considerable number of
labeled data. The difference between the original and Robust
TCLs was quite little for any condition.

A reason why the naive LDA classifier without feature
extraction was better in a scenario with very few labeled data
may be that the distributions of measurements corresponding
to different types of driving behaviors are overlapped with
each other in UAH-DriveSet so that only a half of data
were challenging to distinguish the corresponding behaviors.
This can be speculated by the result that the naive LDA
classifier achieved more than 50% accuracy (much better
performance that the chance level) though only 10 labeled
data was available.

However, the performance improvement of the naive LDA
was saturated soon even if the number of labeled data in-
creased, implying that the data requiring intelligent estimation
could have nonlinear boundary between different driving be-
haviors. On the contrary, nonlinear feature extraction by TCL
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could transform the boundary so that the switching points
from one behavior to another was emphasized, resulting in
better improvement as the available labeled data increased. To
confirm the speculation, we need to visualize and analysis the
feature space constructed by TCL in the future study.

The result showing comparable performance between the
original and Robust TCLs was also different from our hypothe-
sis. This could be because UAH-DriveSet is so clean that there
are very few outliers in the data set. The data were collected
in real driving experiments but the participants were asked
to mimic various driving behaviors, which may be different
from the natural situation. The cloud-of-things via smartphone
attached to volunteers’ cars could be helpful for data collection
in more natural situation as well as improve its efficiency: This
is also a possible direction for future studies.
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