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Abstract—Unmixing is an important application of spectral
imaging, and snapshot sensors could enrich its applicability. How-
ever, their spatio-spectral tradeoff decreases spatial resolution
as the number of bands increases. While basis spectra can be
estimated even on the downsampled multispectral image, it is
difficult to retain high-resolution abundance maps. In this paper,
we propose a high spatial resolution unmixing method from
a single snapshot multispectral image. The proposed method
simultaneously completes a snapshot data to restore the full
sensor size multispectral image. In a simulation, we show a
resolution-enhanced unmixing and better completion accuracy
compared with state-of-the-art tensor completion methods. We
also demonstrate against real data the best quality for completion
and unmixing in the full sensor size.

I. INTRODUCTION

Multispectral unmixing is a source separation technique
widely studied in remote sensing [1]. It decomposes a spectral
image into basis spectra or endmembers, often representing
composite materials, and their abundance maps. A basis
spectrum is the reflectance of some pure material and the
abundance map is its spatial distribution. The applicability of
unmixing will be enriched by snapshot imaging with mosaic
filter arrays [2], [3] that can capture dynamic scenes with
multispectral resolution [4], [5], [6]. However, the raw signal
is equivalent to a sparsely sampled tensor with its sensor size
and the number of bands (M in Fig. 1). Mosaic rearrangement
reconstructs a low resolution multispectral image but spatially
down-samples and degrades fine textures. This spatio-spectral
tradeoff prevents the capture of a high-resolution multispectral
image and thus abundance maps from a snapshot.

An accurate enough completion method, if it exists, would
resolve our problem, followed by an additional unmixing
process. However, existing completion methods have some
limitations. Demosaicing methods [7], [8], [9], [10], [11]
assume a small number of channels or require specific spectral
profiles and arrangement to satisfy inter-channel correlations.
Neither linear interpolation nor inter-channel correlation can
be applied to our study, because we use built-in filters with
distinct responses. Low rank assumption is known as useful
for tensor recovery, especially because it is often assumed
that the rich spectral information in spectral imaging has low-
rank structures. Many types of tensor factorizations have been
proposed. Tensor unfolding into matrices [12], with the total
variation regularization [13], might ignore correlation among

spatial dimensions. Tensor ring [14] entangles dimensions of
different meanings and might be difficult to fit with the data
structure of multispectral images. Tensor tubal rank [15] con-
siders inter-axis correlation, and t(transformed)-TNNs as its
convex relaxation have achieved state-of-the-art results [16],
[17], [18], [19], [20], [21], [22]. However, we consider that the
low-rank approximation loses some frequency information in
reconstructed spectra. As a result, existing completion methods
are insufficient for the purpose of high-resolution restoration
from snapshot multispectral images and further unmixing.

To tackle this problem, we propose a simultaneous com-
pletion and unmixing method to obtain a high-resolution
multispectral image and abundance maps from a snapshot.
Fig. 1 illustrates our idea. We facilitate the mosaic-rearranged
multispectral image to estimate basis spectra. We assume that
signal contamination on spectra introduced by pixels’ mis-
alignment from the mosaic rearrangement is moderate enough
for endmeber extraction, e.g. by using the vertex component
analysis (VCA) [23]1. Note that we do not consider whether
they are the (pure) emdmembers or not; we just consider
basis spectra for the linear mixing model. Then, our idea is to
complete missing entries by linear mixing of the basis spectra
while assuring smoothness of the abundance maps. The basis
spectra, the observed tensor entries, and the nonnegativity
constraint determine the solution spaces of the tensor and the
abundance maps, where we prefer the most smoothly varying
abundance maps. We are inspired by the previous work [25],
[26], [27], [28] to regularize smoothness of abundance maps.
We use the anisotropic total variation (TV) [29] as in [25],
[26], but it can be replaced by the isotropic TV [30] or the
other smoothness regularizations. We expect that optimizing
over the solution spaces is useful to obtain high-resolution
abundance maps and better complete snapshot data, compared
to existing tensor completion methods followed by unmixing.

In the remainder of this paper, we summarize the notations,
formulate our idea as an optimization problem, and then derive
update rules by the alternating direction method of multipliers
(ADMM) [31]. We conduct a simulation experiment to eval-
uate the completion accuracy and show resolution-enhanced
abundance maps. We also demonstrate quality enhancement
on full sensor size completion and unmixing on real data.

1Robust PCA [24] could also be used to reduce outliers in advance.
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Fig. 1. Schematic of the proposed method.

II. PROPOSED METHOD

A. Notations

A multispectral image is a three-way tensor, denoted like
A ∈ Rn1×n2×n3 in calligraphy. Its k-th frontal slice is a
matrix A(k) = A(:, :, k) ∈ Rn1×n2 in bold letters. The
symbol : means that all the elements appear in that dimension.
‖A‖2F =

∑
i,j,k |A(i, j, k)|2 is the square of the Frobenius

norm of the tensor A. The (i, j)-th tube of A is a vector
a(ij) ∈ Rn3 , and the tubal transformation [15] by P ∈
Rn′3×n3 is A ×3 P ∈ Rn1×n2×n′3 , for which A ×3 P(i, j, :
) = Pa(ij) ∈ Rn′3 . The anisotropic TV norm [29] of A is
‖A‖TV :=

∑
i,j |∂xAij |+|∂yAij |, where ∇ = (∂x; ∂y) is the

differential operator and ; vertically concatenates the operators.
A � 0 has nonnegative elements. The projection of A onto
Ω ⊂ dom(A) has [PΩ(A)] (i, j, k) = A(i, j, k) if (i, j, k) ∈ Ω
and 0 otherwise. R≥0 is the set of nonnegative real num-
bers. The indicator function on Ω gives ιΩ(A;M) = 0 if
PΩ(A) = PΩ(M) forM that observes the elements in Ω, and
∞ otherwise. The soft-thresholding operator [32] acts element-
wise as Sλ(x) = sgn(x)max(|x| − λ, 0).

B. Preparing observed tensor

The sensor are deposited with repeated b × b filters of
different transmission spectra on its surface. Every pixel has
one filter on it. A snapshot by the sensor is a mosaic image
Iraw ∈ RH×W with the repeated b× b spectral bands (Fig. 1
II-B). We convert this raw image into an observed tensorM∈
RH×W×B as M(i, j, k(i(mod b), j(mod b))) = Iraw(i, j),
where k is the band index of b × b(= B) filters. M has
observed values sparsely only at the elements of Ω, where
the sampling rate is 1/B and one band observation at a pixel.

C. Mosaic-rearrangement and basis spectra extraction

We can roughly reconstruct a spectrum by vectorizing the
b × b pixels into a spectrum of B bands (Fig. 1 II-C).
As described in Section I, such a reconstructed spectrum
deviates from the true spectrum due to pixels’ misalignment
at material boundaries and shading change. However, spectra

are reasonably recovered when b×b pixels observe an equally
illuminated surface region composed of the same material. We
assume scenes wherein changes of local textures and shading
are not so drastic within most of the b×b pixel regions over the
image. We expect that the basis spectra are obtained with near
correct spectra by reducing such moderate spectral deviations.

Under these assumptions, we mosaic-rearrange the observed
tensor M (or equivalently the raw mosaic image) into a
spatially down-sampled tensor X ′ ∈ Rh×w×B , where h =
H/b and w = W/b, respectively (Fig. 1 II-C). It follows
X ′(i′, j′, k) = I((i′ − 1)b + k−1

x , (j′ − 1)b + k−1
y ), where

the abbreviated symbol k−1
{x,y} denotes {x, y}-position that

corresponds to the band index k. Then, we extract basis spectra
on the mosaic-rearranged, low-resolution multispectral image
X ′. In this study, we use VCA algorithm [23] (The details are
in the experimental section). Then, the power of the extracted
spectra are normalized to one. We denote the basis spectra as
B ∈ RB×M , each column of which is an basis spectrum.

D. Problem Formulation

We will optimize the full sensor size multispectral image
X ∈ RH×W×B and the abundance maps W ∈ RH×W×M
simultaneously, where H and W are the height and width of
the sensor, B is the number of bands, M is the number of basis
spectra, and each frontal-slice ofW is an abundance map (Fig.
1 II-D). We minimize their TV norm [29] as follows:

{X ∗,W∗} = arg min
X ,W

M∑
m=1

‖W(m)‖TV

s.t. PΩ(X ) = PΩ(M), X =W ×3 B, W � 0. (1)

The first constraint requires the recovered data and that the
sensor values are consistent at the observed elements. The
second constraint implies that we follow the linear mixing
model for multispectral images: X andW should be consistent
to each other to satisfy this constratint. The third constraint is
the nonnegativity constraint of the abundance maps. Hereafter,
we denote X̃ := W ×3 B for brevity. Note that we require
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no tuning parameter and will obtain the smoothest abundance
maps among possible solutions under the constraints.

E. Optimization

We solve the convex optimization problem (1) with the
ADMM framework in a similar manner to [31]. The aug-
mented Lagrangian is

L(X ,W;U ,V) = ιΩ(X ;M) + ιRH×W×M
≥0

(W)

+

M∑
m=1

‖V(m)
x ‖1 +

M∑
m=1

‖V(m)
y ‖1 + 〈X − X̃ ,Φ1〉

+
ρ1

2
‖X − X̃‖2F + 〈W − U ,Φ2〉+

ρ2

2
‖W − U‖2F

+

M∑
m=1

(
〈∇U(m) −V(m),Φ3

(m)〉+
ρ3

2
‖∇U(m) −V(m)‖2F

)
,

(2)

where U and V are the auxiliary variables, Φi(i = 1, 2, 3)

are the Lagrange multipliers, and Φ
(m)
3 is the (m)-th frontal

slice matrix of Φ3. Note that ∇U(m) := (∂x; ∂y)U(m), where
we assume the periodic boundary condition, and V(m) =

(V
(m)
x ; V

(m)
y ) ∈ R2H×W . We hereafter add the superscript

(t) to parameters updated in the t-th iteration. Subproblems at
(t+ 1)-th iteration are solved as follows:

1) The update of X is a square error minimization under
the observation, and written in a closed form with a projection
on the complement Ωc of the observed elements Ω:

X (t+1) = arg min
X

ιΩ(X ;M) +
ρ

(t)
1

2
‖X −

(
X̃ (t) − Φ

(t)
1

ρ
(t)
1

)
‖2F

= PΩc

(
X̃ (t) − Φ

(t)
1

ρ
(t)
1

)
+M (3)

2) The update of W is a constrained least square problem:

W(t+1) = arg min
W

ρ
(t)
1

2
‖X (t+1) −

(
X̃ (t) − Φ

(t)
1

ρ
(t)
1

)
‖2F

+ ιRH×W×M
≥0

(W) +
ρ

(t)
2

2
‖W −

(
U (t) − Φ

(t)
2

ρ
(t)
2

)
‖2F

= ιRH×W×M
≥0

(W) +
1

2
‖W ×3 B̃(t) − Y(t+1)‖2F , (4)

where B̃(t) and Y(t+1) in the last equation are

B̃(t) =

√ρ(t)
1 B√
ρ

(t)
2 I

 ,Y(t+1) =


√
ρ

(t)
1

(
X (t+1) +

Φ
(t)
1

ρ
(t)
1

)
√
ρ

(t)
2

(
U (t) − Φ

(t)
2

ρ
(t)
2

)
 ,(5)

where I is the identity matrix. This subproblem with the
nonnegative constraint can be solved by an existing imple-
mentation [33].

3) The update of U is

U (t+1) = arg min
U

ρ
(t)
2

2
‖U −

(
W(t+1) +

Φ
(t)
2

ρ
(t)
2

)
‖2F

+
ρ

(t)
3

2

M∑
m=1

‖∇U(m) −

(
V(m)(t) − Φ

(m)(t)
3

ρ
(t)
3

)
‖2F . (6)

The m-th slice of U (t+1) satisfies

(ρ
(t)
2 1 + ρ

(t)
3 ∇T∇)U(m)(t+1) = ρ

(t)
2 W′(m) + ρ

(t)
3 ∇TV′(m),

W ′ :=W(t+1) +
Φ

(t)
2

ρ
(t)
2

, V ′ := V(t) − Φ
(t)
3

ρ
(t)
3

, (7)

from which the update can be computed efficiently in the
Fourier domain [34].

4) The update of V is the following L1-norm minimization:

V(m)(t+1)

= arg min
V(m)

ρ
(t)
3

2
‖V(m) −

(
∇U(m)(t+1) +

Φ
(m)(t)
3

ρ
(t)
3

)
‖2F

+‖V(m)
x ‖1 + ‖V(m)

y ‖1

= S
1/ρ

(t)
3

(
∇U(m)(t+1) +

Φ
(m)(t)
3

ρ
(t)
3

)
(8)

5) Finally, the updates of the Lagrange multipliers are

Φ
(t+1)
1 = Φ

(t)
1 + ρ

(t)
1 (X (t+1) −W(t+1) ×3 B) (9)

Φ
(t+1)
2 = Φ

(t)
2 + ρ

(t)
2 (W(t+1) − V(t+1)) (10)

Φ
(m)(t+1)
3 = Φ

(m)(t)
3 + ρ

(t)
3 (∇V(m)(t+1) −U(m)(t+1))

for m = 1, · · · ,M. (11)

ρ
(t+1)
l = min

{
γρ

(t)
l , ρmax

}
for l = 1, 2, 3, (12)

where γ accelerates the convergence speed when γ > 1.

Algorithm 1 Multispectral image completion and unmixing
Input: Observed sparse tensor M∈ RH×W×B
Output: Completed multispectral image X ∗ ∈ RH×W×B and

abundance maps W∗ ∈ RH×W×M
Initialization : X =M,W = 0, observed tensor elements
Ω, ρ(0)

i , Φ
(0)
i = 0 (i = 1, 2, 3);

Extract basis spectra with VCA algorithm.
Parameters : γ, tol, max iteration, ρmax

1: while below max iteration or max diff > tol do
2: Update X using Eq. (3).
3: Update W using Eq. (4).
4: Update U using Eq. (7).
5: Update V using Eq. (8).
6: Update Lagrange multipliers using Eq. (9)-(12).
7: Continue updates 2-6
8: end while

We implemented Algorithm 1 with MATLAB2020b on a
64-bit computer with an Intel Core-i7-8700 3.20GHz CPU.
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We take the observed sparse tensor as input with the indices
of observed entries, set the basis spectra extracted with the
VCA algorithm, and then iteratively update the variables until
the maximum absolute change of variables goes lower than the
tolerance or the maximum number of iterations is achieved.

III. EXPERIMENTS

A. Data preparation

Simulation data are prepared for numerical evaluation. We
rendered Bunny and Dragon from the Stanford 3D scanning
repository [35] in the size of 510 × 510 pixels and 9 bands.
The objects are textured with two or four randomly sampled
Macbeth colors. We used a renderer PBRT-v2 [36], which we
modified to simulate spectral images. The rendered images are
used as the ground truth, and we simulate a snapshot input
as of the same tensor structure as the real sensor but with
a different filter arrangement and transmittance to simplify
simulation. Specifically, we set to 2 nm spectral resolution
and 9 bands are chosen starting from 400 nm with 10 nm
steps. Interreflection is simulated up to 5 times. Although
interreflection violates the assumptions of linear unmixing and
should be considered as a weak outlier, we keep them into
consideration for a realistic imaging assumption.

Real data are captured with the snapshot camera CMS-C
(SILIOS product). It captures a raw sensor image with 12-bit
of dynamic range and a size of 1280 × 1024 pixels. Every
3 × 3 pixels repeated on the sensor plane (Fig. 1 II-B) are
deposited with thin layers of 9 different transmittance (b = 3
and B = 9 in Section II-B). The raw image is rearranged
into a subsampled tensor M (Fig. 1 II-B) as described in
Section II-B. The target object is a dyed fabric, which is of
diffuse reflection with less number of materials (or colorants)
than the number of bands, so that basic assumptions for linear
unmixing holds. There is a need for the flat field correction:
first, we take a white reference illuminated by light sources
then take the object with the same lighting. (The necessity of
flat field correction depends on sensor characteristics.) In this
study, we illuminated the object by two halogen lamps placed
at both sides of the camera in a dark room.

The following procedures are the same for both simulation
and real data, for numerical comparison and qualitative com-
parison, respectively.

B. Basis spectra extraction

We extracted basis spectra on the rearranged, low-resolution
multispectral images (Fig. 1 II-C) X ′ with VCA [23] by
manually fixing the number of basis spectra M . Note that
VCA also removes moderate noise from inputs in its prepro-
cess. We fix the number M that gives the smallest squared
error between the rearranged low-resolution image X ′ and
reconstructed tensor from the basis spectra and low-resolution
abundance maps using SUnSAL [33], which unmix a spectral
image under the assumptions of linear mixing and nonnegative
abundance maps as we also assume. Although VCA finds basis
spectra for each trial, we optimize on the extracted spectra
for the first trial in this experiment. Note that, except for our

motivation to complete tensors, estimated abundance maps on
the low-resolution image and our reconstruction are expected
to have similar distributions but different resolutions. We will
see this expectation experimental results.

Note also that we can use any algorithm to extract basis
spectra in our method. Although the appropriate basis spectra
extraction depends on the purpose of unmixing, in this study,
we resort to VCA widely used for general purposes.

C. Tensor completion and optimization of abundance maps

The input tensor M is normalized so that elements are
within the range of [0, 1]. We run Algorithm 1 with fixing
parameters: tolerance 10−5; maximum number of iteration
500; the acceleration speed γ = 1.1; and ρ(0)

1 = ρ
(0)
2 = ρ

(0)
3 =

10−1 for real captured data, ρ(0)
1 = ρ

(0)
2 = ρ

(0)
3 = 1 for sim-

ulation data, respectively. These parameters were determined
to get a better convergence speed in experiments.

D. Results

We evaluated the completion accuracy of our method against
the state-of-the-art completion methods: LRTC-TV [13] that
uses low-rankness of unfolded matrices with (isotropic) TV
regularization; TRLRF [14] in the framework of tensor ring;
DCTNN [18] that uses tensor low-rankness of transformed ten-
sors by discrete cosine transformation (DCT); FTNN [21] that
shares the same spirit of DCTNN [18] but introduces framelet
transformation to define tensor nuclear norm; and TNTV [22]
that augments DCTNN [18] with TV regularization (in addi-
tion to allowing Gaussian noise and sparse outliers). Other than
DCTNN [18], for which we used our implementation, we used
the authors’ implementation with Matlab. TNTV [22] provides
options whether using DCT or discrete Fourier transformation
(DFT), where we only considered DCT since many existing
studies have suggested that DCT performs better than DFT
for t-TNN families. We used the default tuning parameters
recommended by the authors except for FTNN [21], for which
we set the level to 3, the maximum level that worked for our
inputs. It obtained better results than when the level is set
to 2. For TNTV [22], we empirically tuned the weight on
TV to increase performance. The other parameters for noise
and outliers are default but they are not so sensitive to our
results. Note that some of these methods provide ways to
automatically determine the tuning parameters from input data.

1) Results for simulation experiment: Table I shows the
comparison of completion performance. The reconstruction
quality was measured by the relative error (RelE)

RelE =
‖X ? −X 0‖2F
‖X 0‖2F

and the peak signal-to-noise ratio (PSNR) averaged over all
the band images. Our completion results were the best in
terms of RelE. This is considerably because we have facil-
itated the snapshot structure to extract basis spectra and our
formulation could better describe the subspace of multispectral
images, which are spanned with the basis spectra and have
spatial smoothness. TNTV [22] performed the second, but
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competed with DCTNN [18] for all the scenes. Although
FTNN [14] is reported to perform the better against different
tasks, DCTNN [18] was better for our objects. Note that, in
this numerical and the next qualitative evaluations, our results
do not mean the inferior performance of the existing methods
and rather suggest that our formulation has advantages to treat
snapshot multispectral images: there are some difficulties for
fair enough comparison, e.g., it is often difficult to set the
appropriate rank to apply TRLRF. Also, the methods without
any smoothness regularization (TRLRF, DCTNN, FTNN) have
been studied under random sampling assumptions, while the
periodic missing entries of snapshot multispectral imaging
might have minimizers that are different from the original
images of smooth appearance. LRTC-TV assumes the same
smoothness, but again the periodic missing entries might be
difficult to complete with this model. In contrast, our method
specifically facilitates the data structure to extract basis spectra
and we could restrict the solution space.

The quality of our completion results in simulation was bet-
ter than the other methods (Fig. 3, where the observed band-1
images are almost invisible because the sampling is so sparse).
Although TNTV [22] performed the second best in numerical
evaluation, DCTNN [18] seems to have produced reasonable
results. However, t-TNN only considers the global redundancy
of images and thus block artifacts remained (best viewed in
zoom in digital format). TNTV [22] additionally considers
local smoothness, but t-TNN and the TV regularization are
difficult to balance and seems insufficient to characterize
multispectral images. This method also oversmoothes over
the dark background due to noise-aware data fidelity, while
RelE and PSNR got worse if we decrease the smoothness.
On the other hand, our method does not require to balance
smoothness and simply requires to minimize the TV norms of
abundance maps with regressing unobserved tensor values over
basis spectra. We consider that this endows a better solution
space.

To demonstrate the high-resolution recovery of abundance
maps, we also show in the simulation the recovered high-
resolution abundance maps in comparison with the low-
resolution maps generated by mosaic-rearrangement and SUn-
SAL algorithm [33] (Fig. 2). The reference color image of the
object and two zoomed-up regions of those abundance maps
are also shown. Although the detailed textures are corrupted
in the low-resolution abundance maps, they can be clearly
observed in our reconstructed results.

2) Results for real data experiments: In a real experiment,
our method provided a better high-resolution image than the
compared methods (Fig. 4). TNTV [22] was the second best
as in simulation, and the quality comparison in zoomed-up
images demonstrates that TNTV [22] overly smoothed textures
and dotted artifacts remained. Our completion results better
recovered fine textures. Wrinkles on the background (second
and 5,6-th column in the bottom two rows) are well displayed
in our result, while it completely disappeared in TNTV [22].

The details of our completion results (Fig. 5) demonstrates
that the proposed method recovers a better high-resolution

Fig. 2. Recovered high-resolution abundance maps (top, m is the index of
the corresponding basis spectra or the endmember), low-resolution abundance
maps (middle), color reference (bottom-left), and two zoomed-up regions of
those abundance maps (bottom-right) for a simulated Dragon object textured
with four Macbeth colors(-2, -7, -17, and -20).

multispectral image. The top-left is the band-1 pickups from
the mosaic image, the rearranged low-resolution image, and
the top-right is the completed high-resolution band-1 image.
The bottom three rows show the rearranged low-resolution
but zoomed-up textures, our recovered ones, and their color
references. Color references are captured with iPhone-X, and
there is some displacement to compare but not much. Sharp
edges are retrieved in our completed results, and detailed spots
of colorants are more clearly observed in our results than
rearranged images.

Finally, in Fig. 6, we compare abundance maps that
our method recovered, rearranged low-resolution maps, and
TNTV [22] that performed the second-best among existing
completion methods followed by the standard unmixing with
VCA [23]. Here, we reasonably assume that estimated abun-
dance maps under the extracted basis spectra seems roughly
similar between rearranged and recovered maps using SUn-
SAL [33]. In this perspective, our recovered abundance maps
looks similar to rearranged low-resolution maps, while the
maps obtained after TNTV [22] differs. The contrast of each
abundance map is clearly different between TNTV+SUnSAL
and the mosaic-rearranged result. The edges of estimated maps
are corrupted in rearranged low-resolution maps, while are
clearly observed in our recovered maps. Distributions are
different in TNTV [22], which we think is due to spectral
bias in TNN formulation as described in the Introduction.
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IV. CONCLUSION

We proposed a snapshot multispectral unmixing method
with completing missing values of observed sparse tensors.
Based on the basis spectra that are estimated with VCA,
we recovered the full sensor size abundance maps under
the nonnegative constraint and the anisotropic total variation
regularization. We solved the proposed optimization problem
by ADMM without any balancing parameter. A simulation
experiment shows that our method performed better than the
state-of-the-art tensor completion methods. We also demon-
strate in a real data experiment that our method recovered
the most reasonable, full sensor size abundance maps from a
snapshot multispectral image.
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TABLE I
COMPARISON RESULTS OF RECONSTRUCTION ERROR FOR SIMULATED MULTISPECTRAL IMAGES. B(D)-NO. DENOTES BUNNY OR

DRAGON GEOMETRY AND THE REFLECTANCE OF SELECTED TEXTURED COLORS FROM MACBETH COLOR CHECKER.
LRTC-TV TRLRF DCTNN FTNN TNTV Ours

Material RelE PSNR RelE PSNR RelE PSNR RelE PSNR RelE PSNR RelE PSNR
B-3-12 0.8469 18.43 1.237 14.20 0.4532 24.13 0.6791 20.73 0.3313 25.14 0.0528 42.28
B-5-9 0.8563 18.39 1.189 14.39 0.4493 23.98 0.6912 20.36 0.3230 25.04 0.0460 43.30
B-7-18 0.8403 20.66 1.383 14.01 0.4625 25.91 0.6764 22.44 0.4659 24.76 0.0797 41.90
D-4-16 0.8309 23.22 2.031 13.60 0.4531 28.55 0.7808 24.39 0.4212 27.20 0.1911 36.37
D-6-11 0.8436 21.50 1.802 13.37 0.4579 27.17 0.6524 23.86 0.4204 26.37 0.0799 42.61
D-8-15 0.8413 20.84 1.750 13.20 0.4588 26.45 0.6681 22.98 0.3906 26.28 0.1014 39.11
B-3-9-12-14 0.8288 20.64 1.507 14.16 0.4561 25.74 0.6467 22.55 0.3296 26.72 0.0790 39.12
B-2-7-13-17 0.8406 18.87 1.192 14.42 0.4446 24.34 0.7867 19.93 0.3272 24.54 0.0880 36.41
B-1-5-11-21 0.8375 20.14 1.481 13.92 0.4399 25.74 0.7202 21.53 0.2803 27.31 0.0867 38.68
D-2-7-17-20 0.8417 21.28 1.789 13.66 0.4590 26.66 0.6022 23.57 0.3758 26.38 0.1044 39.15
D-5-8-12-14 0.8371 20.94 1.740 13.56 0.4611 26.45 0.6483 23.18 0.3922 26.05 0.1046 38.64
D-4-10-15-19 0.8449 23.08 2.071 14.65 0.4665 28.30 0.5021 26.12 0.3992 28.04 0.1120 39.99

Fig. 3. Simulation comparison between completion results for band-1 images between our method and state-of-the-art completion methods. Observed band-1
image, rearranged low-resolution band-1 image, and color image are also shown for reference.

Fig. 4. Real data comparison between completion results for band-1 images of our method and state-of-the-art tensor completion methods (first row); enlarged
views from TNTV of second-best quality (second row) and ours of the best (third row).
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Fig. 5. Band-1 of the mosaic, rearranged, and our completed image. Bottom three rows show zoomed-up textures of selected regions with reference colors.

Fig. 6. The estimated abundance maps (m is the index of the corresponding basis spectra or the endmember), rearranged low–resolution result, and TNTV [22]
with unmixing result. Bottom three rows are zoomed-up selected regions.
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