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Abstract—For underwater image quality improvement, we 
regard image restoration as dehazing problem, and proposed a 
restoration method combining disparity map and color 
constraints. According to the dark channel prior model, image 
can be recovered through the estimation of background light and 
transmission. Considering the consistency of disparity map and 
depth information, the disparity map and dark channel are 
fused in the non-subsampled contour wave transform domain. 
Then the background light closer to true depth in RGB color 
space is estimated by the fused map with haze-lines theory. In 
consideration of the different attenuation characteristics of 
different wavelengths light in water, the transmission estimation 
is established according to the red-based attenuation coefficient 
ratio. It is benefit to improve the color distortions especially in 
the texture area. The experiment results show that the proposed 
underwater restoration image method can achieves better 
brightness and contrast enhancement, the image edge sharpness 
and color recovery. 

I. INTRODUCTION 

Underwater image quality is lower than outdoor imaging 
because water optical properties and water medium structure 
are uncertain and complex. Unsatisfactory illumination 
intensity causes uneven illumination, and the different 
attenuation coefficients of various wavelength give rise to 
color distortion. The existence of scattering effect makes 
many stray lights (i.e. background light) enter the camera 
together with the reflected light of the target, which makes the 
underwater image appear atomization effect. Therefore, the 
image restoration process can be regarded as the dehazing 
process. 

Dehazing algorithms based on image enhancement focus 
on improving image contrast, such as histogram equalization 
[1], Retinex algorithm [2], homomorphic filtering [3], etc.. 
Dehazing methods based on image restoration, such as dark 
channel prior (DCP) [4], focus on background light estimation 
and transmittance estimation. Supposing the texture and color 
features is prominent both in target and background region, an 
image distinct can be selected as the background light with 
gradient information, histogram statistical information, or 
non-local prior [5]. The global background light also can be 
estimated by adjustment of light source color [6], graph cut 
algorithm [7], or neural networks [8]. In accordance with the 

prior information and the different attenuation coefficient of 
RGB channel, transmission map can be optimized by their 
difference or fusion [9-11]. Furthermore, the neural network 
methods based on atmospheric degradation model [12] or end 
to end deep learning also are used to haze removal [13] [14]. 

 These methods estimate the transmission and rely to some 
extent of the DCP method which was proven empirically on 
outdoor scenes, but their assumptions do not always hold 
underwater scenes. With the increase of underwater imaging 
distance, the absorption of light by water becomes more 
obvious. The different wavelengths’ attenuation is dissimilar. 
The typical character is the faster attenuation of red light than 
blue and green ones. The directly using of original DCP 
model may cause depth of field (DOF) estimation mistake, 
such as color deviation (as shown in Fig. 1 (c), the fish body 
and sea water are blue) and non-significant dehazing effect. 

When we estimate the background light attenuation 
coefficient and scattering coefficient, considering the different 
transmission characteristics of RGB channels is beneficial to 
ameliorate the image bias problem. In addition, the pixel 
value of RGB channel changes more significantly with the 
increasing DOF in underwater images. The intensity of 
corresponding dark channel increases synchronously. The 
depth information in disparity map obtained from binocular 
images directly represents the target distance and gives 
expression to target edge information. We can fuse disparity 
map and dark channel to obtain dark channel prior. That can 
improve block phenomenon in order to estimate precise 
global background light. 

Therefore, we proposed an underwater image dehazing 
method based on disparity estimation and color constraint. In 
Sect. II, we present our dehazing method separately from 
background light and transmission estimation. In Sect. III, we 
show the dehazing results, and take comparison with stare-of-

Fig. 1   Image dehazing by DCP model  
(a) original; (b) transmission map; (c) restored map

(a) (b) (c) 
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art methods to evaluate the performance of the proposed 
methods. Sect. IV concludes our work and future research 
challenges. 

II. PROPOSED APPROACH 

Based on the DCP method, we first apply disparity 
estimation to background light estimation calculation, and 
approach image restoration of various water bodies by 
combining with haze-lines estimation of color space. The 
depth information of the disparity map was fused with the 
dark primary color prior in the NSCT domain, and the 
background light in RGB space was obtained by combining 
the haze-lines theory. Then we develop transmission 
estimation model based on the attenuation coefficient of red 
channel. According to the Schechner model, the underwater 
image is restored by our recovery model with the estimated 
background light and transmittance. The procedure of the 
proposed algorithm is shown in Fig. 2. 

A. Background Light Estimation Based on Disparity 
Estimation and Haze-lines Prior 

Nonsubsampled contourlet transform (NSCT) is one of 
contourlet transform method [15], which takes on 
translational invariance. Supposing the image is decomposed 
to S scales with eight directions at each scale, the reference 
coefficient has eight neighbors in the same sub-band. The 
same spatial location of coarse scale is defined as father 
coefficient, while the sub-band of different directions in the 
same scale is defined as brother coefficient. To achieve fusion 
of disparity map and dark channel map, the correlation 
between neighborhood and brother coefficient is used for 
feature detection. 

We define the fuzzy factor bN  which is determined by the 

low-frequency coefficient of the original dark 
channel. 1 ( , )darkC x y and 1 ( , )disC x y are respectively low-

frequency coefficients of original dark channel and disparity 
map, the fused image 1 ( , )C x y  can be defined as: 

 

1 1 1( , ) (1 ) ( , ) ( , )b dark b disC x y N C x y N C x y    

The image’s second to S scale corresponds to its high 
frequency coefficient. The coefficient of fused image can be 
calculated according to neighborhood information at each 
scale and brother coefficient in eight directions. At the i-
direction and j-scale of high frequency sub-band, the NSCT 
coefficient of pixel ( , )x y  is defined as ( , )i

jC x y  , and the 

neighborhood information at each scale is defined as regional 
energy : 
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The brotherly correlation  ,ip iq

j jC C  is used to represent 

the relationship between high frequency coefficients in 
different directions on the same scale. The brother coefficient 
of the subband at the same direction is normalized, and its 
correlation weight ip

jC
W . The greater the correlation weight, 

the higher the brother coefficient at ip direction of j scale. The 
features measurement  ,ip

jM x y  of any pixel point is defined 

as: 
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For the fusion between two images, the high frequency 

coefficient with a larger characteristic measurement value will 
be chosen to be the high frequency coefficient after fusion as 
follows: 
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According to the image haze removal theory in references 

[16] and [27], as far as a haze-free image, pixel value 
distribution in each color space is a class of RGB space; as far 
as a haze image, the corresponding distribution is a line which 
is called haze-lines [18]. Due to the different foggy levels in 
different regions, there may be several haze-lines in one 
image, and multiple regions may belong to the same haze-line. 
The haze-line ( )H x   is represented as: 

 
 ( )= 1 ( ) max( ( ), ( ))R B GH x I x I x I x   

 
If the target is at infinite point, the red channel attenuation 

was close to 0. At this moment, the pixel value is the haze-
line value. We arrange the pixel values in fused dark channel 
map from smallest to largest, and take on the top 10% pixels 
(usually are the larger depth of field). Then the pixels with 
lower pixel values in each color space are searched in the 
corresponding positions of original image. The value of these 
pixels are the background light  RA ,  GA and BA . 

(3)
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 Fig. 2. Procedure of the proposed algorithm 
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B. Transmission Estimation Based on Red Channel 
Reference Attenuation Ratio 

The environment is dissimilar in various water types 
because of the dissolved substances, suspended matter, 
sediment, aquatic organisms, etc.. Thus, there are different of 
light absorption and scattering coefficients. Ref. [19] gives the 
approximate attenuation coefficients of different sea areas and 
coastal waters. We utilize these coefficients to estimate 
transmittance for RGB channel. 

The farther the underwater optical imaging distance is, the 
more light is absorbed by the water body.  , ,R G B    is 

the attenuation coefficient of water body in different channel. 
The water transmittance is related to the light propagation 
distance as shown as: 

 
( )( ) d xt x e 


  

 
Substituting (6) into Schechner model with considering 

RGB color space, there is 
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In order to reduce the transmittance calculation error 

caused by attenuation coefficient error, the attenuation ratio 
can be introduced. The attenuation coefficient ratio is 
respectively defined as /RG R G     and /RB R B   . 
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Color number is much less than pixel number in one image. 

In Ref. [18], each channel’ pixels are clustered into some 
fuzzy sets by k-means algorithm, then each pixel value is 
replaced by the center of each set. If at least one pixel in each 
set is a haze-free pixel, the original transmittance of RGB 
space can be obtained respectively. In underwater images, the 
attenuation coefficients of RGB space are not consistent, thus 
there may be non-fuzzy pixels in each fuzzy set. Taking the 
red channel as the benchmark, and considering the attenuation 
coefficient for each channel, the lower transmittance threshold 

Rmt  is defined as: 

 

1
max 1 ,(1 ) , (1 )

1
RG RBGR B

Rm
R G B

II I
t

A A A
  

    
 

 

 
As we know, the attenuation of red channel is faster with 

long transmission distance. According to the attenuation 
coefficient measured by Jerlov, the attenuation coefficient of 

R channel is close to 0.9 when the distance is 1 meter between 
target and camera. The attenuation constraint threshold is 
defined as 1 ( )Rt x  , and the red channel transmittance 0 ( )Rt x  

can be obtained by: 
 

 0 ( ) max 1 ( ),R R Rmt x t x t 
 

 
In the haze-lines model, the fuzzy line clustering is carried 

on global pixels. If there are fewer pixels in a certain set and 
the noise problem is serious, the restoration result for these 
pixels will be limited. Therefore, we introduce a smoothing 
term to construct the minimization function: 
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where   is the balance coefficient between data and smooth 
term; xN  is the neighborhood pixel of x ;  ( )x  is the 

standard deviation obtained from haze-lines. 
With the estimation for background light A  and 

transmittance map ˆ ( )Rt x  , the underwater images can be 

recovered as follows: 
 

/ /ˆ ˆ ˆ ˆ, where ,
ˆ

G R B R
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III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Set-up and Method 

We carry out the experiment both in seawater and fresh 
water. And we take both qualitatively and quantitative 
comparisons with state-of-the-art methods. 

The author of Ref. [20] provides original binocular images 
dataset and disparity map by EpicFlow [21]. EpicFlow is 
suitable for dense matching with further areas, and the low 
signal-to-noise-ratio images. Therefore, we directly use them 
for seawater experiment.  

For fresh water experiment, the images were taken using a 
pair of IP cameras (1280H×960V resolution with focal length 
5mm). The water depth was 0.6 meters, turbidity was 1.68 
NTU, and the target distance was less than 1.5 meters. The 
disparity maps of fresh water are obtained by WCPSP [22] 
which is suitable for finding smoothness target edge 
especially at the low texture images.  

The proposed method improves image quality based on 
dehazing model, and we make comparation with classical 
DCP [4], DCP based on red-channel (RDCP) [23], non-local 
and depth-based DCP (UDCP) [24], non-local image 
dehazing (NLD) [18], and underwater single image color 
restoration using haze-lines (UWHL) [20]. 

B. Recovery Results and Qualitative Comparison 

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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Fig. 3 and Fig. 4 shows the input images on the top row,
followed by the output of different underwater image
dehazing methods.
The DCP method estimates the global background light as

a constant without considering different depth of field. As Fig.
3 shows the effect of DCP method dehazing is not observable.
The RDCP and UDCP method is more effective in removing
atomizing effects than the DCP method. Due to the RDCP
method considering the red channel decays faster than blue
and green channels, dehazing images appear to be red
especially near camera region (see the results of RT3008,
RT4485). The UDCP method only consider the light
attenuation of blue-green channels, so the whole image
appears blue or green. The NLD, UWHL and our method
detect the haze-lines in different color spaces, and estimate
more accurate background light for underwater images. Their
effect is better especially in target location. The proposed
method is more obvious comparing with NLD, and the color
restoration is more natural than UWHL.
Unfortunately, there is image distortion in father region

(see the results of RT5450). The mistake is caused by using
disparity information for the background light estimation. The
accurate calculation of disparity is difficult in low-texture
domain.
As Fig. 4 shows, the image of stainless steel pipe had a

slight camera shake, which resulted in a distinct blur. The
RDCP method leads the whole image to be green. Although
the other comparison methods perform better in fog removal,
the pipe edge is not clear. The results of DCP and UWHL
methods appear reflective phenomenon. At the image of rusty
metal, some white attachments lead the dark channel and

transmittance calculating mistakes near the camera area by the
DCP and UDCP methods. The experiment of painted cube
can test the effect of restoration method on color restoration.
The DCP, UDCP, NLD and UWHL method have color bias,
which are reddish, reddish, green and green, respectively.
Because the target is relatively close, using the red channel's
fast attenuation feature for transmittance estimate can obtain
better color restoration effect. The results of cement cube
image show that the brightness recovery is not good by DCP
and UDCP methods, and the color recovery is not good by
NLD and UWHL methods. The dehazing effect by the RDCP
and the proposed methods is not obvious, but the edges and
details of the wall attachment in the right area are clearly
visible.
Due to the water turbidity and the target low-texture, the

depth estimation is not accurate enough, which affects the
calculation of transmittance and the final restoration result.

C. Quantitative Evaluation
We employ the non-reference image quality evaluation

indexes to take quantitative evaluation, including mean
gradient, contrast, image information entropy, underwater
image sharpness measure. We calculate the four non-
reference image quality evaluation indexes and separately
show them in Fig. 5. The abscissa is the experiment image,
and the ordinate is the index value. The larger the
corresponding index value, the better the image quality. The
proposed method achieves the best results almost all seawater
or fresh water images. It has a good effect on target edge
restoration in the image because the disparity map is used for

Fig. 3 Comparison of restoration results in seawater
Fig. 4 Comparison of restoration results in freshwater
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background light estimation. Although the RDCP method 
acquires the best contrast in the restoration of RT4376, RT 
5450 and RT 5478, the target regions in the three images have 
poor visibility. Meanwhile, our method can retain rich 
information and improve the image clarity. The UWHL 
method obtains the highest at other images, whereas there is 

color deviation problem at RT4376, RT5450, RT5478, 
painted cube and mud cube. 

Therefore, it is effective to introduced disparity information 
for the background estimation. Using red benchmark channel 
for attenuation ratios is conducive to improve transmission 
estimation. However, our method depends on the disparity 
calculation accuracy. If the water turbidity is too high, it is 
hard to get precise matching result at target edge. The 
restoration effect of the method will be compromised. 

IV. CONCLUSIONS AND FUTURE WORK 

We expanded the DCP model to handle underwater 
wavelength attenuation and background depth. Specifically, 
we evaluate background light by considering the binocular 
stereo depth information. We coalesce different frequency 
domain of disparity map and dark channel in NSCT domain, 
and pick out the best background light region. By considering 
the quicker attenuation of red channel, we establish the 
attenuation coefficient model to obtain transmittance map. 

Unlike atmospheric images, underwater scenes are more 
complex under the water types and turbidity. The restoration 
experiments were carried out on the seawater and fresh 
images. The proposed method has better results in terms of 
image brightness, color fidelity and image details. However, it 
cannot reach the best value for all quality evaluation indexes. 
The disparity calculation and its integration method should be 
improved in subsequent work. 
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