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Abstract— Many studies have applied deep learning techniques 

to image compression in recent years. However, it is difficult to 
apply these algorithms to all sorts of images because it is necessary 
to cover a large number of diverse images for training. To tackle 
this challenge, we propose a new image compression framework 
based on customized learning. We only let the model analyze a 
single image and learn the lost information after traditional 
compression algorithms. Then, we encode the trained model 
parameters and the compressed image separately and transmit 
them together. At the decoder, we can restore the uncompressed 
image content by the model parameters. In our experiments, we 
use JPEG and JPEG2000 to validate our algorithm, and from the 
experimental results we can prove that our framework is feasible. 

I. INTRODUCTION 

With the advancement of technology, the number and file sizes 
of digital images are increasing, which makes storage devices 
and transmission channels unable to afford. The best solution 
is to compress the image through an image compression 
algorithm to represent the same image content with a lower 
number of bits. Existing image compression algorithms can be 
divided into traditional and deep learning algorithms based on 
whether they use a Convolutional Neural Network (CNN) or 
not. 

JPEG, JPEG2000 and HEIF are the traditional algorithms 
that are widely used today. These algorithms are mainly 
composed of entropy coding, transform coding and predictive 
coding techniques. JPEG first partitions the image into blocks, 
then uses the discrete cosine transform (DCT) to transform the 
information in the block from the spatial domain to the 
frequency domain, quantizes the information in different 
degrees according to the frequency, and then uses entropy 
coding for compression. In order to improve the blocking 
artifacts of JPEG, JPEG2000 uses wavelet transform instead of 
the block-based DCT. HEIF is an encoding technique based on 
HEVC compression to reduce the amount of storage required 
for images. While traditional algorithms are effective in 
removing redundant information from images, they also 
introduce noise such as blocking artifacts, ringing artifacts and 
blurring artifact. 

With the development of deep learning, many researches use 
CNN technology to develop compression algorithms. There are 

two development methods based on CNN: designing a new 
compression algorithm [1-3], or combining with the traditional 
compression algorithm [4-7].The first method is to use CNN to 
design the encoder and decoder of the whole compression 
algorithm to achieve high compression efficiency. Another 
method is to use CNN to complement the traditional 
compression algorithm to improve the quality of the 
compressed image. The problem of deep learning algorithms is 
needing a large and diverse set of training images so that the 
algorithm can maintain high performance across different types 
of image content. In addition, the existing work often uses 
complex and deep networks to improve the generalizability of 
models, but this also brings huge computational complexity 
and number of parameters, which makes real-time applications 
very difficult, especially in the lightweight decoder. It is also 
important to avoid models to fit to specific datasets for the 
existing CNN approaches. 

In this paper, we propose an image compression architecture 
combining traditional algorithms and CNN to solve the above 
problems. The input image is first compressed by traditional 
algorithms, the compressed image is used to train the model, 
and then the compressed image and the model parameters are 
stored after the training is completed, where ground truth is the 
original image, which enables the output of content close to the 
original image after decoding on the decoding side. Since the 
number of parameters in the model affects the performance of 
the compression, we design a lightweight model for the 
purpose of bit reduction. The contribution of this paper is as 
follows: 
 We propose an innovative image compression algorithm 

that stores the model parameters carrying the detailed 
image information together with the compressed image 
to enhance the viewing quality of the decoded image. 

 Unlike current deep learning compression methods, we 
let the model precisely match a single compressed image, 
rather than pursuing generalizability of the model.  

 We use JPEG and JPEG2000 to test our proposed image 
compression architecture, and the experimental results 
prove that our algorithm can achieve better image quality. 
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Fig. 1 Flowchart of the proposed architecture 

II. RELATED WORK 

A. Compression algorithm based on CNN 
Toderici [1] designed the model architecture based on the 

concept of auto-encoder, adopted the binary neural network to 
quantize the representation code, and added the architecture of 
recurrent neural network in the decoder to improve the image 
quality after decoding. Johnston [2] improved the architecture 
of Toderici [1] by adding rate distortion optimization to 
improve the compression efficiency. Agussson [3] combined 
the architecture of auto-encoder with GAN for training, which 
can produce high visual quality images even in the case of low 
bit rate. A bit rate allocation architecture was also proposed to 
select the parts that need to be reserved according to semantic 
segmentation. 

B. Improving tradition compression algorithm using CNN 
Jiang [4] proposed ComCNN and RecCNN at the encoder 

and decoder to reduce the burden of image transmission and 
storage. ComCNN is used to extract the representative 
components of the image, then output the compact 
representation image, and then encode the image. RecCNN is 
responsible for restoring the decoded image to the original 
image. BlockCNN [5] combines the concept of PixelCNN with 
JPEG image compression standard, uses the surrounding coded 
blocks to predict the content of the current block, then 
calculates the residual between the predicted result and the 
original content, and encodes and stores the residual with the 
compressed content. DnCNN [6] uses a 20-layer network to 
repair the same type of distorted image but with different 
degrees of disortion, and repairs the distorted image by 
predicting the residual information. [7] used recursion to 
simulate the effect of deep network with fewer convolution 

layers, and used the dilated convolution to increase the 
effective receptive field of the model. 

III. PROPOSED METHOD 

Our proposed framework for image compression is shown in 
Fig. 1. Since the human eye is more sensitive to the changes in 
luminance, our compression framework is constructed for the 
luminance component of the image. At the encoding side, the 
input image is first compressed and converted to a bit-stream, 
and then the bit-stream is decoded to obtain the content of the 
compressed image. Then we partition the input image and the 
compressed image into block pairs and use each block pairs to 
train the model. Finally, we convert all the trained parameters 
to bit-stream and transmit them to the decoder together with the 
bit-stream of the compressed image. In the decoder, the 
bitstream is decoded and converted to the compressed image 
and model parameters, and then the corresponding model 
parameters are applied to each area of the compressed image, 
resulting in a high quality output image. 

A. Design Model 
Since our compression framework has to store the model 

parameters together with compressed image, the number of 
model parameters could affect the compression performance. 
Thus, it is necessary to design a restoration model with low 
number of parameters. The model designed in this work is 
shown in Fig. 2. Throughout the network, we use a residual 
architecture to predict the difference between the input image 
and the ground truth. Compared to directly predicting the 
whole image, the predicted residual component only needs to 
generate the difference from the original image, so using only 
a shallow network can give a closer result to the ground truth.  

 

 
Fig. 2 Proposed lightweight model 
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(a) Our method combined with JPEG 

   
(b) Our method combined with JPEG2000 

Fig. 3 Results of RD-curve on different databases 

We use a standard convolutional layer for the first and last layer 
of the model structure and a depthwise separable convolution 
for the rest of the model structure. The size of the convolution 
kernel for all layers is 3 x 3 pixels. Compared to using standard 
convolution layers, the depthwise separable convolution can 
effectively reduce the number of model parameters while 
maintaining similar model performance. We add instance 
normalization to all the convolution layers except the last one 
to improve the training speed and stability of the model. 

B. Training 
In order to allow the model to be quickly converged for 

practical applications, we pre-trained the model. In the model 
pre-training process, we used BSDS500 and DIV2K as the pre-
training dataset and generated compressed images with 
different compression levels using JPEG and JPEG2000, and 
cropped the images to 256×256 size during training. The model 
training results are susceptible to the initialization of the 
weights, so we choose the MSRA initialization proposed by He 
[8]. We use SGDM as the optimizer and set the initial learning 
rate to 0.01. The loss functions are based on MSE as shown in 
(1).  

Next, we describe the setup of the compression algorithm in 
the practical application. We use the pre-trained parameters for 
the initialization of the parameters. The compressed image is 
used as the input to the model, and the original image is used 
as the ground truth. Since Adam is better than SGDM in 
making the model to converge quickly, we adopt Adam as the 
optimizer and set the initial learning rate to 0.1. To avoid 
unstable network training due to gradient exploding, we use 

clipping gradient to avoid excessive parameter updates. The 
loss function used here is the same as in pre-training. 𝐿𝑜𝑠𝑠ெௌா ൌ 1𝑚ฮ𝐼௧ െ 𝐼ฮଶଶ

ୀଵ  (1) 

IV. EXPERIMENT RESULT 

We use a PC with an Intel i7-7700K CPU running at 3.0GHz 
and an NVIDIA 2080Ti GPU as our test environment. Table I 
shows the number of parameters in our model, the 
computational complexity of our model, and the time required 
to decode an image with an image size of 256 × 256. It is worth 
noting that the number of parameters and complexity of our 
model are relatively low compared to existing models, and it 
takes less than 0.5s to process an image using the CPU, which 
proves that this architecture has a low hardware requirement.  

Table I Details of our model 

# of Parameters 378 
GFLOPs 0.14 

Run time on CPU (s) 0.43 
Run time on GPU (s) 0.015 

We use LIVE1, Kodak and Classic5 as test sets as well as 
BD-rate alike and BD-PSNR alike as evaluation criteria, which 
is modified for images from videos to evaluate the averaging 
RD-curve performance for compression algorithms. We 
choose JPEG and JPEG2000, two common lossy compression 
algorithms, as the image encoders in our compression 
framework. 

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1393



Original image 

 
bpp / PSNR / SSIM 

JPEG JPEG + Ours 

  
0.4 / 28.84 / 0.7732 0.4 / 29.80 / 0.7936 

JPEG2000 JPEG2000 + Ours 

  
0.4 / 30.41 / 0.8073 0.4 / 30.58 / 0.8076 

Fig. 4 Results of different compression methods 

Table II show the results of our method. We compare the 
results of combining JPEG and JPEG2000 with our method 
respectively. Fig. 3 is the RD-curve on all test datasets. Our 
method reduces average rate by 16.18% and 4.77%, and 
improves the average PSNR by 0.952dB and 0.254dB, 
respectively, compared to the original algorithm. It can be seen 
from Fig. 4 that our method is not only better in numerical data 
analysis, but also outperforms in terms of image visual quality. 

Table II The results of our method on different datasets 

 JPEG  JPEG2000 

Dataset Rate 
(∆%) 

PSNR  
(∆dB) 

Rate 
(∆%) 

PSNR  
(∆dB) 

LIVE1 -15.27 0.906 -4.12 0.224 

Kodak -17.05 0.998 -4.76 0.256 

Classic5 -17.31 1.000 -8.61 0.419 
Average -16.18 0.952 -4.77 0.254 

V. CONCLUSIONS 

We combine the traditional image compression algorithm 
and deep learning technology to propose a novel image 
compression architecture. Compared to other work using deep 
learning, we let the model learn the information lost when a 
single image is compressed, and encode and store the model 
parameters with the compressed image to aid in image 
decoding to restore high quality images. We tested three image 
databases, LIVE1, Classic5 and Kodak. The experimental 
results show that our architecture can provide better 
compression efficiency. 
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