
Image Compression Architecture with Built-in
Lightweight Model

Tien-Ying Kuo*, Yu-Jen Wei† and Jhih-Jhou Lin †
Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C

E-mail: * tykuo@ntut.edu.tw
†{t106319012, t107318045} @ntut.org.tw

Abstract— Many studies have applied deep learning techniques

to image compression in recent years. However, it is difficult to
apply these algorithms to all sorts of images because it is necessary
to cover a large number of diverse images for training. To tackle
this challenge, we propose a new image compression framework
based on customized learning. We only let the model analyze a
single image and learn the lost information after traditional
compression algorithms. Then, we encode the trained model
parameters and the compressed image separately and transmit
them together. At the decoder, we can restore the uncompressed
image content by the model parameters. In our experiments, we
use JPEG and JPEG2000 to validate our algorithm, and from the
experimental results we can prove that our framework is feasible.

I. INTRODUCTION

With the advancement of technology, the number and file sizes
of digital images are increasing, which makes storage devices
and transmission channels unable to afford. The best solution
is to compress the image through an image compression
algorithm to represent the same image content with a lower
number of bits. Existing image compression algorithms can be
divided into traditional and deep learning algorithms based on
whether they use a Convolutional Neural Network (CNN) or
not.

JPEG, JPEG2000 and HEIF are the traditional algorithms
that are widely used today. These algorithms are mainly
composed of entropy coding, transform coding and predictive
coding techniques. JPEG first partitions the image into blocks,
then uses the discrete cosine transform (DCT) to transform the
information in the block from the spatial domain to the
frequency domain, quantizes the information in different
degrees according to the frequency, and then uses entropy
coding for compression. In order to improve the blocking
artifacts of JPEG, JPEG2000 uses wavelet transform instead of
the block-based DCT. HEIF is an encoding technique based on
HEVC compression to reduce the amount of storage required
for images. While traditional algorithms are effective in
removing redundant information from images, they also
introduce noise such as blocking artifacts, ringing artifacts and
blurring artifact.

With the development of deep learning, many researches use
CNN technology to develop compression algorithms. There are

two development methods based on CNN: designing a new
compression algorithm [1-3], or combining with the traditional
compression algorithm [4-7].The first method is to use CNN to
design the encoder and decoder of the whole compression
algorithm to achieve high compression efficiency. Another
method is to use CNN to complement the traditional
compression algorithm to improve the quality of the
compressed image. The problem of deep learning algorithms is
needing a large and diverse set of training images so that the
algorithm can maintain high performance across different types
of image content. In addition, the existing work often uses
complex and deep networks to improve the generalizability of
models, but this also brings huge computational complexity
and number of parameters, which makes real-time applications
very difficult, especially in the lightweight decoder. It is also
important to avoid models to fit to specific datasets for the
existing CNN approaches.

In this paper, we propose an image compression architecture
combining traditional algorithms and CNN to solve the above
problems. The input image is first compressed by traditional
algorithms, the compressed image is used to train the model,
and then the compressed image and the model parameters are
stored after the training is completed, where ground truth is the
original image, which enables the output of content close to the
original image after decoding on the decoding side. Since the
number of parameters in the model affects the performance of
the compression, we design a lightweight model for the
purpose of bit reduction. The contribution of this paper is as
follows:
 We propose an innovative image compression algorithm

that stores the model parameters carrying the detailed
image information together with the compressed image
to enhance the viewing quality of the decoded image.

 Unlike current deep learning compression methods, we
let the model precisely match a single compressed image,
rather than pursuing generalizability of the model.

 We use JPEG and JPEG2000 to test our proposed image
compression architecture, and the experimental results
prove that our algorithm can achieve better image quality.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1391978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

Fig. 1 Flowchart of the proposed architecture

II. RELATED WORK

A. Compression algorithm based on CNN
Toderici [1] designed the model architecture based on the

concept of auto-encoder, adopted the binary neural network to
quantize the representation code, and added the architecture of
recurrent neural network in the decoder to improve the image
quality after decoding. Johnston [2] improved the architecture
of Toderici [1] by adding rate distortion optimization to
improve the compression efficiency. Agussson [3] combined
the architecture of auto-encoder with GAN for training, which
can produce high visual quality images even in the case of low
bit rate. A bit rate allocation architecture was also proposed to
select the parts that need to be reserved according to semantic
segmentation.

B. Improving tradition compression algorithm using CNN
Jiang [4] proposed ComCNN and RecCNN at the encoder

and decoder to reduce the burden of image transmission and
storage. ComCNN is used to extract the representative
components of the image, then output the compact
representation image, and then encode the image. RecCNN is
responsible for restoring the decoded image to the original
image. BlockCNN [5] combines the concept of PixelCNN with
JPEG image compression standard, uses the surrounding coded
blocks to predict the content of the current block, then
calculates the residual between the predicted result and the
original content, and encodes and stores the residual with the
compressed content. DnCNN [6] uses a 20-layer network to
repair the same type of distorted image but with different
degrees of disortion, and repairs the distorted image by
predicting the residual information. [7] used recursion to
simulate the effect of deep network with fewer convolution

layers, and used the dilated convolution to increase the
effective receptive field of the model.

III. PROPOSED METHOD

Our proposed framework for image compression is shown in
Fig. 1. Since the human eye is more sensitive to the changes in
luminance, our compression framework is constructed for the
luminance component of the image. At the encoding side, the
input image is first compressed and converted to a bit-stream,
and then the bit-stream is decoded to obtain the content of the
compressed image. Then we partition the input image and the
compressed image into block pairs and use each block pairs to
train the model. Finally, we convert all the trained parameters
to bit-stream and transmit them to the decoder together with the
bit-stream of the compressed image. In the decoder, the
bitstream is decoded and converted to the compressed image
and model parameters, and then the corresponding model
parameters are applied to each area of the compressed image,
resulting in a high quality output image.

A. Design Model
Since our compression framework has to store the model

parameters together with compressed image, the number of
model parameters could affect the compression performance.
Thus, it is necessary to design a restoration model with low
number of parameters. The model designed in this work is
shown in Fig. 2. Throughout the network, we use a residual
architecture to predict the difference between the input image
and the ground truth. Compared to directly predicting the
whole image, the predicted residual component only needs to
generate the difference from the original image, so using only
a shallow network can give a closer result to the ground truth.

Fig. 2 Proposed lightweight model

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1392

(a) Our method combined with JPEG

(b) Our method combined with JPEG2000

Fig. 3 Results of RD-curve on different databases

We use a standard convolutional layer for the first and last layer
of the model structure and a depthwise separable convolution
for the rest of the model structure. The size of the convolution
kernel for all layers is 3 x 3 pixels. Compared to using standard
convolution layers, the depthwise separable convolution can
effectively reduce the number of model parameters while
maintaining similar model performance. We add instance
normalization to all the convolution layers except the last one
to improve the training speed and stability of the model.

B. Training
In order to allow the model to be quickly converged for

practical applications, we pre-trained the model. In the model
pre-training process, we used BSDS500 and DIV2K as the pre-
training dataset and generated compressed images with
different compression levels using JPEG and JPEG2000, and
cropped the images to 256×256 size during training. The model
training results are susceptible to the initialization of the
weights, so we choose the MSRA initialization proposed by He
[8]. We use SGDM as the optimizer and set the initial learning
rate to 0.01. The loss functions are based on MSE as shown in
(1).

Next, we describe the setup of the compression algorithm in
the practical application. We use the pre-trained parameters for
the initialization of the parameters. The compressed image is
used as the input to the model, and the original image is used
as the ground truth. Since Adam is better than SGDM in
making the model to converge quickly, we adopt Adam as the
optimizer and set the initial learning rate to 0.1. To avoid
unstable network training due to gradient exploding, we use

clipping gradient to avoid excessive parameter updates. The
loss function used here is the same as in pre-training. 𝐿𝑜𝑠𝑠ெௌா ൌ 1𝑚ฮ𝐼௧ െ 𝐼ฮଶଶ

ୀଵ (1)

IV. EXPERIMENT RESULT

We use a PC with an Intel i7-7700K CPU running at 3.0GHz
and an NVIDIA 2080Ti GPU as our test environment. Table I
shows the number of parameters in our model, the
computational complexity of our model, and the time required
to decode an image with an image size of 256 × 256. It is worth
noting that the number of parameters and complexity of our
model are relatively low compared to existing models, and it
takes less than 0.5s to process an image using the CPU, which
proves that this architecture has a low hardware requirement.

Table I Details of our model

of Parameters 378
GFLOPs 0.14

Run time on CPU (s) 0.43
Run time on GPU (s) 0.015

We use LIVE1, Kodak and Classic5 as test sets as well as
BD-rate alike and BD-PSNR alike as evaluation criteria, which
is modified for images from videos to evaluate the averaging
RD-curve performance for compression algorithms. We
choose JPEG and JPEG2000, two common lossy compression
algorithms, as the image encoders in our compression
framework.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1393

Original image

bpp / PSNR / SSIM

JPEG JPEG + Ours

0.4 / 28.84 / 0.7732 0.4 / 29.80 / 0.7936

JPEG2000 JPEG2000 + Ours

0.4 / 30.41 / 0.8073 0.4 / 30.58 / 0.8076

Fig. 4 Results of different compression methods

Table II show the results of our method. We compare the
results of combining JPEG and JPEG2000 with our method
respectively. Fig. 3 is the RD-curve on all test datasets. Our
method reduces average rate by 16.18% and 4.77%, and
improves the average PSNR by 0.952dB and 0.254dB,
respectively, compared to the original algorithm. It can be seen
from Fig. 4 that our method is not only better in numerical data
analysis, but also outperforms in terms of image visual quality.

Table II The results of our method on different datasets

 JPEG JPEG2000

Dataset Rate
(∆%)

PSNR
(∆dB)

Rate
(∆%)

PSNR
(∆dB)

LIVE1 -15.27 0.906 -4.12 0.224

Kodak -17.05 0.998 -4.76 0.256

Classic5 -17.31 1.000 -8.61 0.419
Average -16.18 0.952 -4.77 0.254

V. CONCLUSIONS

We combine the traditional image compression algorithm
and deep learning technology to propose a novel image
compression architecture. Compared to other work using deep
learning, we let the model learn the information lost when a
single image is compressed, and encode and store the model
parameters with the compressed image to aid in image
decoding to restore high quality images. We tested three image
databases, LIVE1, Classic5 and Kodak. The experimental
results show that our architecture can provide better
compression efficiency.

ACKNOWLEDGMENT

This work was supported by Ministry of Science and
Technology (grant # MOST 109-2221-E-027- 088-)

REFERENCES
[1] G. Toderici et al., "Full resolution image compression with

recurrent neural networks," in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5306-5314.

[2] N. Johnston et al., "Improved lossy image compression with
priming and spatially adaptive bit rates for recurrent networks,"
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4385-4393.

[3] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. V.
Gool, "Generative adversarial networks for extreme learned
image compression," in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 221-231.

[4] F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao, "An end-
to-end compression framework based on convolutional neural
networks," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 10, pp. 3007-3018, 2017.

[5] D. Maleki, S. Nadalian, M. Mahdi Derakhshani, and M. Amin
Sadeghi, "Blockcnn: A deep network for artifact removal and
image compression," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2018, pp.
2555-2558.

[6] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a
gaussian denoiser: Residual learning of deep cnn for image
denoising," IEEE transactions on image processing, vol. 26, no.
7, pp. 3142-3155, 2017.

[7] T.-Y. Kuo, Y.-J. Wei, and C.-H. Chao, "Restoration of
Compressed Picture Based on Lightweight Convolutional Neural
Network," in 2019 International Symposium on Intelligent
Signal Processing and Communication Systems (ISPACS), 2019,
pp. 1-2: IEEE.

[8] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification," in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1026-1034.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1394

