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ABSTRACT

This paper proposes a method for self-supervised denoising
of hyperspectral images (HSI). Learning-based HSI denois-
ing has limited success because it is often difficult to collect
large datasets. To address the difficulty, we proposed a self-
supervised approach, in which we exploit the self-similarity
that hyperspectral images inherently have among adjacent
bands. Unlike other hyperspectral denoising methods based
on training a neural network, we do not need any training
dataset, and it is possible to restore an image by the CNN
trained only by a single noisy input. We demonstrate the
validity of our method through some experiments and show
that our approach has better or comparable characteristics
than conventional methods.

Index Terms— Self-supervised learning, hyperspectral
image, image recovery

1. INTRODUCTION

Hyperspectral images (HSI) is useful for a wide range of
applications in earth observation, including forest manage-
ment, precision management, precision agriculture, ecosys-
tem monitoring, resource exploration, and seafloor depth
measurement. HSIs are often affected by noise due to their
narrow spectral bandwidths, which prevents the precise ex-
traction of useful information in applications such as clas-
sification, unmixing, and target detection. To address this
issue, various methods have been proposed for denoising
HSI. There are image restoration methods that take advantage
of the low-rank property, sparsity, and non-local correlation
of HSI [1, 2, 3, 4, 5, 6, 7, 8].

Exploiting the self-similarity of images is esssential in
some image restoration methods. BM4D ¥citeBM, which is
built based on the well-known non-local method BM3D, has
been used as a baseline to verify the performances of HSI
restoration methods. FastHyDe ¥citeFastHyDe efficiently ex-
ploits both the low-rankness and self-similarity. Although
these methods realize high performance, they are suitable for
Gaussian and Poisson noises. However, CNN-based methods
that take into account the self-similarity of HSI have rarely
been explored.

In this study, we propose a denoising method using im-
ages of adjacent bands. The approach follows the method pro-

posed in [9], where a pair of noisy images is used to produce a
clear image. A band in an HSI usually has strong correlations
with its adjacent bands, and noises can be modeled as being
added to each band independently. Our method takes advan-
tage of this characteristic. The proposed method exploits the
self-similarity of HSI and the smoothing property of CNN
and can train CNN with only a noisy input image without any
other training data.

In the following section, we describe our method based
on the noise2noise algorithm [9]. We show the validity of
our method through several denoising examples by compar-
ing our method with some conventional HSI denoising meth-
ods in Section 3, and then we conclude this work in Section
4.

(a) Stanford’s 60th band (b) Stanford’s 61th band

Fig. 1. Correlations between adjacent bands in HSI: There is
high correlations between the adjacent bands (a) and (b).

Fig. 2. Image of the data settings for the source and target
images. Reusing a band has about twice as many datasets as
simply dividing the band into source and target images.
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Table 1. Results for Gaussian noise removal (PSNR[dB]/SSIM).

σ HSI LRTDTV [10] SSTV [11] HSSTV [12] BM4D [13] RPCA [14] our method

PaviaC 38.29/0.9393 38.02/0.9369 37.32/0.9390 38.53/0.9457 38.25/0.9551 35.58/0.9434
PaviaU 38.07/0.9418 37.82/0.9381 37.16/0.9417 38.53/0.9481 37.30/0.9531 35.14/0.9431

0.05 Frisco 41.62/0.9634 39.85/0.9449 40.78/0.9667 40.41/0.9603 42.70/0.9813 37.20/0.9440
Stanford 41.86/0.9676 39.90/0.9394 40.52/0.9634 40.75/0.9630 43.00/0.9785 37.37/0.9510

WashingtonDC 40.39/0.9586 38.98/0.9285 38.78/0.9464 39.62/0.9511 41.74/0.9717 35.58/0.9702
AVERAGE 40.05/0.9541 38.91/0.9376 38.91/0.9514 39.57/0.9536 40.60/0.9679 36.17/0.9503

σ HSI LRTDTV SSTV HSSTV BM4D RPCA our method

PaviaC 32.87/0.8515 31.32/0.7544 32.92/0.8393 32.82/0.8565 32.71/0.8620 32.59/0.9004
PaviaU 32.73/0.8556 31.16/0.7539 32.72/0.8413 32.71/0.8657 30.38/0.8592 31.69/0.8979

0.15 Frisco 36.15/0.9026 31.82/0.7355 34.27/0.8525 34.75/0.8894 35.44/0.9118 34.14/0.8965
Stanford 35.95/0.9084 32.53/0.7438 34.85/0.8514 35.05/0.8910 35.91/0.9036 32.96/0.8815

WashingtonDC 35.95/0.8913 32.27/0.7322 34.16/0.8239 33.62/0.8381 34.88/0.8826 33.24/0.9610
AVERAGE 34.70/0.8830 31.82/0.7440 33.78/0.8417 33.79/0.8681 33.78/0.8838 32.92/0.9074

σ HSI LRTDTV SSTV HSSTV BM4D RPCA our method

PaviaC 28.79/0.7810 25.67/0.4877 27.35/0.5870 30.32/0.7917 29.40/0.7661 30.58/0.8627
PaviaU 28.62/0.7863 25.51/0.4871 27.17/0.5863 30.01/0.8002 26.93/0.7716 29.96/0.8628

0.25 Frisco 31.72/0.8542 25.87/0.4438 27.85/0.5678 32.32/0.8376 32.18/0.8281 32.41/0.8704
Stanford 31.75/0.8602 26.64/0.4645 28.62/0.5856 32.66/0.8280 32.67/0.8147 32.00/0.8798

WashingtonDC 31.70/0.8397 26.46/0.4671 28.30/0.5721 31.20/0.7418 31.99/0.7901 32.84/0.9596
AVERAGE 30.52/0.8242 26.03/0.4700 27.86/0.5798 31.30/0.7999 30.63/0.7941 31.56/0.8871

2. SELF-SUPERVISED LEARNING FOR HSI
DENOISING

The proposed method takes advantage of the feature that
an HSI has high self-similarity among bands. The adjacent
bands of an HSI are shown in Figure 1. These figures show
some neighboring bands of the Stanford and Indian. One
can see that the adjacent bands are similar when a spectral
interval is small. We use this self-similarity to restore HSIs.

Lehtinen et al. [9] introduce a method to restore latent im-
ages using a high correlation between two measurements on a
noisy image pair. The technique exploits the implicit smooth-
ing properties of CNNs, and they experimentally proved that
a training set of clear images is not necessary as supervised
data to learn a denoising network. Our work is inspired by
this technique.

We consider a simple additive degradation model:

y = x+ n (1)

where n denotes additive noises. We consider Gaussian noise

with standard deviation σ and/or line noises in our experi-
ments. Our goal is to estimate the latent clear image x from
the degraded observation y. In our method, we train a CNN
model with pairs (yi, yi+1) consisting of two noisy adjacent
bands in an HSI, where subscript i indicate the indices of the
bands. One of the images is used as the source image and
the other as the target image for training. We create a dataset
by slicing the HSI data and convert it to a set of 2D images.
Next, every pair of two adjacent images is set as source and
target images. The image diagram is shown in Figure 2.

We train a neural network by minimizing the following
equation with the supervised image pair x̂i = yi and a target
yi+1:

arg min
θ

∑
i

L(fθ(x̂i), yi) (2)

where fθ is the neural network.
In this experiment, the loss function is based on L2 loss,

and the learning is done using U-net. The parameters of this
network are the same as in Lehtinen et al[9]. In our method,
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(e) (f) (g) (h)

Fig. 3. Experimental results of removing Gaussian noise of WashingtonDC (30th band). (a)original image, (b)observation,
(c)LRTDTV, (d)SSTV, (e)HSSTV, (f)BM4D, (g)RPCA, (h)our method

we train a network by a single HSI to be denoised. Train-
ing was done using ADAM with parameter values (β1 =
0.9, β2 = 0.99, ε = 10−8).

3. EXPERIMENT

We evaluated our experimental results with PSNR and SSIM.
In order to evaluate the validity of our method, we compare
our method with LRTDTV [10], SSTV [11], HSSTV [12],
BM4D [13] and RPCA [14]. The standard deviation σ of
Gaussian noise is set to σ = 0.05, 0.15, 0.25. The HSI to be
compared is commonly used in the HSI community. These
are the five HSIs, Stanford, PaviaC, PaviaU, Frisco, and
WashingtonDC. We add two types of noises to these images,
Gaussian noise only and Gaussian noise and line noises.

The experimental results are shown in Tables 1 and 2. Ta-
ble 1 shows the results for Gaussian noise, and Table 2 shows
the results for Gaussian noise + line noise. PSNR values
and SSIM values indicate the mean of PSNR and SSIM for
all bands. The bold numbers indicate the best performance.
Fig.3 and Fig.4 show the actual denoised identical images
processed by the methods. Compared to the other methods,
our method is less accurate when the noise intensity is low,
although it outperformes the others when it is high. In par-
ticular, it has the highest accuracy in the evaluation of SSIM.
Fig.3 shows that Gaussian noise is successfully reduced by
all the methods, while there are some differences in clarity. In

(d), (e), and (f), the line noise remains, while it is successfully
removed in (c), (g), and (h).

4. CONCLUDING REMARKS

In this paper, we proposed a denoising method for HSI. The
denoising method is based on the fact that HSI is composed of
highly correlated images. Since exploiting pairs of the same
bands with different noise on them enables denoising, it is
possible to remove the additive noise with our self-supervised
manner. Our method uses self-supervised learning and can
perform as well or better than other superior denoising meth-
ods. Moreover, our method requires for the training only one
image to be denoised. Thus it is possible to operate at a low
cost. HSI essentially costs a lot to capture, and it is thus one
of the critical points that the cost for denoising is low. There-
fore, we expect it to be an effective tool for denoising HSI.
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Fig. 4. Experimental results of removing Gaussian noise and line noise of Stanford (130th band). (a)original image,
(b)observation, (c)LRTDTV, (d)SSTV, (e)HSSTV, (f)BM4D, (g)RPCA, (h)our method
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