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Abstract—Dynamic mode decomposition (DMD) is useful for
video background/foreground separation. This decomposition
algorithm can decompose a video into a set of dynamic
modes, called the DMD mode, and then separate the near-
zero mode as the stationary background and the other modes
as the moving foreground components. However, When fore-
ground/background separation is performed on noisy video,
noisy background/foreground components are obtained because
the DMD mode is degraded by noise. This paper proposes a
novel noise removal method for the DMD mode of a noisy
video. Specifically, we formulate a minimization problem that
simultaneously reduces the noise of the DMD mode and the re-
constructed video. The proposed minimization problem is solved
by an algorithm based on Plug-and-Play alternating direction
method of multipliers (PnP-ADMM). The experimental results
demonstrate the advantages of the proposed method compared
with a conventional noise removal method.

I. INTRODUCTION

In surveillance and in-vehicle systems, video processing

such as noise removal, foreground/background separation, and

object detection is important. Background/foreground separa-

tion is generally an essential step in the detection, identifica-

tion, tracking, and recognition of objects in a video sequence.

Dynamic mode decomposition (DMD) is often used for back-

ground/foreground separation [1]–[5]. DMD has introduced in

the field of fluid dynamics and emerged as a powerful tool

for analyzing the dynamics of nonlinear systems [6]–[8]. In

background/foreground separation, the DMD method identifies

a static background by performing a temporal Fourier decom-

position of video frames. Specifically, it separates a stationary

background and a dynamic foreground by distinguishing be-

tween modes close to zero and the remaining modes.

High-sensitivity shooting in a low-light condition in-

creases sensor noise, resulting in a noisy video. When fore-

ground/background separation based on DMD is performed

on such noisy data, noisy background/foreground components,

which are not suitable for video analysis, are obtained. This is

because the DMD mode is seriously degraded by noise. In the

case of fluid analysis, the total-DMD (TDMD) algorithm based

on total least-squares has been proposed to reduce the bias

error caused by sensor noise [9], [10]. When TDMD-based

methods are applied to the foreground-background separation

problem, they cannot sufficiently remove the spatial noise

because they do not take into account the prior-knowledge

that promotes image smoothness.

For image/video noise removal, optimization-based methods

such as total variation regularization [11]–[14] and filtering-

based denoising methods such as BM3D [15] have been pro-

posed. These methods can remove noise by promoting spatial

smoothness. However, in order to intelligently remove noise

from the noisy video, we need to consider the consistency

of the time direction. Existing methods that only consider

spatial smoothness will result in artifacts such as flickering

and pseudo-edges when played back as video. Furthermore,

a method to directly remove the noise of the DMD mode,

which is obtained by decomposing noisy video, has not been

investigated.

In this paper, we propose a novel noise removal method for

the DMD mode of a noisy video. Specifically, we formulate a

minimization problem based on the Plug-and-Play framework

that simultaneously reduces the noise of the DMD mode and

the reconstructed video. Furthermore, we introduce an algo-

rithm based on the Plug-and-Play alternating direction method

of multipliers (PnP-ADMM) to solve the proposed minimiza-

tion problem. Experimental results show the effectiveness of

the proposed method by comparing with a conventional noise

removal method.

The paper is organized as follows. In Section II, we present

mathematical preliminaries, a DMD algorithm, and a PnP-

ADMM algorithm. Section III introduces a novel minimization

problem for DMD mode denoising. In Section IV, several

examples are presented and compared with a conventional

denoising method to verify the effectiveness of the proposed

method. Finally, we conclude this paper in Section V.

II. PRELIMINARIES

Throughout this paper, bold-faced lowercase and uppercase

letters indicate vectors and matrices, respectively. Real- and

complex-valued N -dimensional vector spaces denote by R
N

and C
N , respectively. We define the set of N × M real-

valued and complex-valued matrices as R
N×M and C

N×M ,

respectively. The operations of nonconjugate and conjugate

transpose of vectors and matrices are denoted as (·)⊤ and

(·)∗, respectively. The operation of extracting the diagonal

components of a diagonal matrix X and converting it into

a column vector is defined by diag(X).
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A. Dynamic Mode Decomposition

The DMD algorithm is defined for pairs of data {xi,yi}
satisfying yi = Axi (i = 1, . . . ,M), for some matrix A.

These vectors are sampled by equispaced snapshots of some

dynamical system. However, the matrix A is not completely

determined by the snapshots in most cases. The DMD al-

gorithm estimates A such that satisfying Y ≈ AX, where

Y := [y1, . . . ,yM ] and X := [x1, . . . ,xM ]. Several methods

have been proposed to calculate DMD [6], [9], [10], [16], [17].

In this paper, we use the basic DMD algorithm [6].

The DMD algorithm [6] is described as follows:

(i) Calculate the (reduced) singular value decomposition

(SVD) of the matrix X as X = USV∗, where U ∈
C

N×r, S ∈ C
r×r, and V ∈ C

M×r, with the rank r.

(ii) Let Ã be defined by Ã = U∗YVS−1.

(iii) Compute the eigendecomposition of Ã as ÃW = WΛ,

where W := [w1, . . . ,wr] is a matrix that is configured

by arranging the eigenvectors wi ∈ C
r (i = 1, . . . , r)

and Λ is a diagonal matrix having eigenvalues λi (i =
1, . . . , r) as the diagonal elements.

(iv) The DMD mode Φ := [φ1, . . . , φr] (φi ∈ C
N ) is

obtained by Φ = UW.

(v) Then, we define Σ ∈ C
r×M as

Σ := [diag(Λ0) diag(Λ1) · · · diag(ΛM−1)]. (1)

(vi) Estimate the diagonal matrix B ∈ C
r×r by minimizing

the cost function

E(B) := ‖X−ΦBΣ‖2F . (2)

(vii) Finally, X is decomposed by Φ,B, and Σ as

X ≈ ΦBΣ. (3)

In this manner, the DMD algorithm decomposes X into Φ,B,
and Σ, where Φ is the set of dynamic modes of observed dy-

namical systems, each diagonal element of B is the amplitude

of each mode, and each row of Σ is a Vandermonde matrix

describing the temporal evolution of each mode.

B. Plug-and-Play Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) [18]

is a proximal splitting algorithm that can treat convex opti-

mization problems of the form

min
x∈RN1 , z∈RN2

F (x) +G(z) s.t. z = Lx, (4)

where F and G are usually assumed to be a quadratic and

proximable function, respectively, and L ∈ R
N2×N1 is a

matrix with full-column rank. For any x(0) ∈ R
N1 , z(0) ∈

R
N2 ,b(0) ∈ R

N2 and γ > 0, the ADMM algorithm is given

by



x
(t+1) = argmin

x

{

F (x) +
γ

2
‖z(t) − Lx− b

(t)‖22

}

,

z
(t+1) = argmin

z

{

G(z) +
γ

2
‖z− Lx

(t+1) − b
(t)‖22

}

,

b
(t+1) = b

(t) + Lx
(t+1) − z

(t+1)
,

(5)

where the superscript (t) denotes the iteration number. The

sequence generated by (5) quickly converges to an optimal

solution of (4).

In PnP-ADMM [19], [20], the solution of the sub-problem

w.r.t. z is replaced by an off-the-shelf denoising algorithm, to

yield

z(t+1) = Dσ

(
x(t+1) + b(t)

)
, (6)

where Dσ denotes the Gaussian denoiser and σ is the stan-

dard deviation of the assumed additive white Gaussian noise

(AWGN).

1) Ball Constraint: The v centered ℓ2-norm ball with radius

ǫ > 0 is adopted as data-fidelity, implying that F of (4) equals

to the indicator function1 of the ball, i.e., F (x) := ιB2
v,ǫ

(x)

with B2
v,ǫ := {x | ‖x− v‖2 ≤ ǫ}. The minimization problem

miny ιB2
v,ǫ

(y) + 1
2γ ‖x − y‖22 equals to the metric projection

onto B2
v,ǫ, given by

PB2
v,ǫ

(x) =

{
x, if x ∈ B2

v,ǫ,

v + ε(x−v)
‖x−v‖2

, otherwise.
(7)

2) Total Variation: By letting Dv and Dh ∈ R
N×N be the

vertical and horizontal first-order differential operators, respec-

tively, with Neumann boundaries, the differential operator is

expressed by D := [D⊤
v D⊤

h ]
⊤

(
∈ R

2N×N
)

for a vectorized

gray image with N pixels, and thus the TV is defined as [21]–

[23]

‖x‖TV := ‖Dx‖1,2 =

N∑

i=1

√
(Dvx)2i + (Dhx)2i , (8)

where (Dvx)i and (Dhx)i are the i-th element of Dvx and

Dhx, respectively.

The minimization problem with TV regularization, which is

often used in PnP-ADMM as denoiser, is defined as

x⋆ = argmin
x

‖x‖TV +
λ

2
‖x− xin‖22, (9)

where xin is a vectorized input image and λ > 0 is a balancing

weight of two terms.

III. PROPOSED METHOD

A. Data Model

Let xm ∈ R
N (m = 1, . . . ,M + 1) be vectorized frames of

a latent video, where N is the number of pixels and M + 1
is the number of frames. Let ym ∈ R

N (m = 1, . . . ,M +
1) be vectorized observed frames, we consider the following

observation model

ym = xm + nm. (10)

where nm ∈ R
N is AWGN.

1Let x ∈ RN be an input vector. For a given non-empty closed convex set
C, the indicator function of C is defined by ιC(x), which returns 0 if x ∈ C,
and +∞ otherwise.
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Algorithm 1 Proposed algorithm for (15)

1: Input : Y, Z
(0)
i , Θ

(0)
i , γi (i = 1, 2, 3), α, ǫ

2: Output : Φ(t)

3: while A stopping criterion is not satisfied do

4: Φ(t+1) ← argminΦ
γ1

2
‖Z

(t)
1 −ΦBΣ−Θ

(t)
1 ‖

2
F + γ2

2
‖Z

(t)
2 −Φ−

Θ
(t)
2 ‖

2
F + γ3

2
‖Z

(t)
3 −ΦBΣ−Θ

(t)
3 ‖

2
F ;

5: Z
(t+1)
1 ← DRr,α/γ1

(

Φ(t+1)BΣ+Θ
(t)
1

)

;

6: Z
(t+1)
2 ← DRm,(1−α)/γ2

(

Φ(t+1) +Θ
(t)
2

)

;

7: Z
(t+1)
3 ← P

BF
Y,ǫ

(

Φ(t+1)BΣ+Θ
(t)
3

)

;

8: Θ
(t+1)
1 ← Θ

(t)
1 +Φ(t+1)BΣ− Z

(t+1)
1 ;

9: Θ
(t+1)
2 ← Θ

(t)
2 +Φ(t+1) − Z

(t+1)
2 ;

10: Θ
(t+1)
3 ← Θ

(t)
3 +Φ(t+1)BΣ− Z

(t+1)
3 ;

11: t← t+ 1;
12: end while

Therefore, we defined the matrix form of m = 1, . . . ,M
frames of the observed video and decomposed it by the DMD

algorithm described in Section II-A as

Y := [y1 y2 . . . yM ] ≈ Φ̂BΣ. (11)

where Φ̂ ∈ C
N×r is the matrix of the noisy DMD mode. We

assumed that the DMD mode only degraded, and then, their

amplitudes B and the temporal evolution Σ are hardly affected

by noise.

B. Minimization Problem

Our aim is to find the noiseless DMD mode Φ∗ from a

noisy observed video Y ≈ Φ̂BΣ. The proposed minimization

problem for the noiseless DMD mode estimation is defined by

min
Φ

αRr(ΦBΣ) + (1− α)Rm(Φ)

s.t. ‖Y −ΦBΣ‖F ≤ ǫ
(12)

where Rr and Rm are regularization terms for a reconstruct

video ΦBΣ and the DMD mode Φ, respectively, and α ∈
[0, 1] is the balancing weight of these terms. Based on the

Plug-and-Play framework, the proposed minimization problem

simultaneously reduces the Gaussian noise of the reconstruct

video and the DMD mode under the Frobenius-reconstruction

error constraint with ǫ and Gaussian denoiser associated with

Rr and Rm.

To find a solution of (12), we use PnP-ADMM described

in Section II-B.

C. Optimization

We define the convex set BF
Y,ǫ similar to (7) as

BF
Y,ǫ :=

{
X ∈ R

N×M | ‖Y −X‖F ≤ ǫ
}
. (13)

To apply PnP-ADMM, we first reformulate (12) into the

following unconstrained problem

min
Φ

αRr(ΦBΣ) + (1− α)Rm(Φ) + ιBF
Y,ǫ

(ΦBΣ), (14)

where ιBF
Y,ǫ

(·) is the indicator function of BF
Y,ǫ. This function

guarantees that the Frobenius norm of Y−ΦBΣ is less than or

equal to ǫ. Thus, the role of the third term of (14) corresponds

to the role of the constraint of (12) in minimization.

By introducing auxiliary variables Z1 ∈ C
N×M ,Z2 ∈

C
N×r, and Z3 ∈ C

N×M , we rewrite the minimization

problem (14) into the following equivalent expression:

min
Φ,Zi(i=1,2,3)

αRr(Z1) + (1− α)Rm(Z2) + ιBF
Y,ǫ

(Z3),

s.t. Z1 = ΦBΣ,Z2 = Φ,Z3 = ΦBΣ.
(15)

The algorithm for solving (15) with γi (i = 1, 2, 3) is summa-

rized in Algorithm 1.

The update of Φ is achieved by solving a simple quadratic

minimization problem.

In the proposed algorithm, the solution of the sub-problems

w.r.t. Z1 and Z2 are replaced by the Gaussian denoiser,

respectively, to yield

Z
(t+1)
1 = DRr,α/γ1

(
Φ(t+1)BΣ+Θ

(t)
1

)
, (16)

Z
(t+1)
2 = DRm,(1−α)/γ2

(
Φ(t+1) +Θ

(t)
2

)
. (17)

In our experiments, we used the total variation minimization

method described in Section II-B2 for both denoiser DRr,α/γ1

and DRm,(1−α)/γ2
. Thus, minimizing the proposed problem

with the TV denoiser yields a set of spatially smooth DMD

modes that can reconstruct spatially smooth frames.

The solution of the sub-problems w.r.t. Z3 is computed by

Frobenius norm ball projection PBF
Y,ǫ

that is similar to (7).

IV. EXPERIMENTS

To demonstrate the effectiveness of the proposed method,

we applied our method to noisy videos2, each of which has

M = 19 frames, artificially degraded by AWGN with five

types of intensities and compared it with the conventional TV

method. Furthermore, the results of the proposed method in

the case of α = 0 were also presented, that is, this method

only considers the spatial smoothness of each DMD mode.

For the quality metrics, we used PSNR and SSIM [25]. For

the parameter setting of the proposed method, we set ǫ =
0.95

√
NMσ and found the visually best results by adjusting

the value of α from 0 to 1 in increments of 0.1. For the TV

method, we found the visually best results by adjusting λ.

The averaged PSNR and SSIM values are shown in Table I

and II, respectively. We calculated PSNR and SSIM for each

frame of each video, and compared its average values. In the

case of Ours, the values of α that gave the best results are

shown in parentheses. One can observe from both tables that

our method, which regularizes both the DMD mode and the

reconstructed video, has the highest values compared with the

TV method and the method that regularizes only the DMD

mode.

Figure 1 shows some closeups of the 19th frame of Scene 1

and Scene 2 degraded by AWGN with the standard deviation

σ = 25/255. One can observe from the figure that our

method effectively removes noise compared with the other

methods. Although the TV method produces smooth images,

2We used the SBMnet dataset [24]. For the sake of simplicity, a color video
was converted to a grayscale video and used in our experiment.
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Fig. 1. Results of the 19th frame in Scene 1 (top) and Scene 2 (bottom) : (from left to right) reference frame, noisy frame, TV result, Ours with α = 0, and
Ours.

TABLE I
PSNR COMPARISON.

Scene σ Noisy TV Ours with α = 0 Ours (α)

1 15/255 24.76 31.99 27.28 32.92 (0.1)
20/255 22.32 30.37 24.47 31.14 (0.2)
25/255 20.44 29.06 22.13 29.83 (0.2)
30/255 18.92 27.88 20.00 28.70 (0.3)
35/255 17.65 26.78 18.48 27.66 (0.4)

2 15/255 24.75 26.92 26.50 28.38 (0.1)
20/255 22.30 25.33 24.04 26.56 (0.1)
25/255 20.43 24.14 21.99 25.33 (0.2)
30/255 18.92 23.18 20.01 24.34 (0.2)
35/255 17.66 22.35 18.53 23.42 (0.3)

3 15/255 24.64 31.20 26.43 31.94 (0.2)
20/255 22.16 29.92 23.73 30.50 (0.3)
25/255 20.26 28.94 21.47 29.47 (0.3)
30/255 18.71 28.13 19.76 28.57 (0.4)
35/255 17.43 27.40 18.18 27.82 (0.5)

the contours of the people and the textures of the floor and

trees are not well preserved compared with our method. When

the regularization weight of the proposed method is set to

α = 0, i.e., the total variation of the DMD mode is only

minimized, the noise is not sufficiently removed in the image

domain because the smoothness of the image domain is not

taken into account.

Figure 2 shows an example of dynamic modes φ1, φ5, and

φ15 in Scene 1 degraded by AWGN with the standard deviation

σ = 25/255. From this figure, one observes that the proposed

method can remove noise in each mode while preserving the

dynamic mode of the scene.

V. CONCLUSIONS

In this paper, we introduced a novel noise removal method

for the DMD mode of a noisy video. The minimization

problem that simultaneously reduces the noise of the DMD

mode and the reconstructed video was defined. We solved

the proposed minimization problem by using the proposed

algorithm based on PnP-ADMM. Experiments confirmed that

the proposed method can efficiently remove noise on the DMD

mode and the reconstructed video.

TABLE II
SSIM COMPARISON.

Scene σ Noisy TV Ours with α = 0 Ours (α)

1 15/255 0.4542 0.8883 0.5673 0.8969 (0.2)
20/255 0.3573 0.8637 0.4480 0.8717 (0.3)
25/255 0.2915 0.8404 0.3564 0.8492 (0.3)
30/255 0.2439 0.8167 0.2802 0.8212 (0.4)
35/255 0.2080 0.7920 0.2329 0.8027 (0.5)

2 15/255 0.7679 0.8555 0.8206 0.8919 (0.1)
20/255 0.6809 0.8025 0.7428 0.8441 (0.2)
25/255 0.6043 0.7525 0.6666 0.8113 (0.2)
30/255 0.5382 0.7046 0.5850 0.7745 (0.2)
35/255 0.4814 0.6579 0.5196 0.7338 (0.3)

3 15/255 0.4948 0.8438 0.5772 0.8607 (0.2)
20/255 0.3832 0.8099 0.4550 0.8260 (0.3)
25/255 0.3054 0.7810 0.3573 0.7955 (0.4)
30/255 0.2493 0.7559 0.2906 0.7699 (0.4)
35/255 0.2079 0.7330 0.2343 0.7478 (0.5)

In future works, we will attempt to improve the com-

putational efficiency of the proposed PnP-ADMM algorithm

by employing stochastic gradient descent algorithms, and we

will apply the proposed scheme for other high-dimensional

volume data denoising problems, e.g., hyperspectral imaing

and CT/MRI imaging.
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