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Abstract—Cameras people use in their daily life usually can
only obtain low dynamic range (LDR) images. In order to obtain
high dynamic range (HDR) images, various methods have been
invented. But there is a significant problem with most HDR
techniques, namely that original HDR methods require images
with different exposure conditions to be taken. In this process,
if the captured objects are in motion, the generated HDR image
will suffer from ghosting artifacts. To solve this problem, one way
is to use different cameras to take images with various exposures
simultaneously; by this method the impact of object motion can
be minimized. Inspired by this idea, we propose MVMEFNet,
an end-to-end network that consists of two sub-networks: Warp
Net which is used to align the images taken from two views
and produce a disparity map, and Fusion Net which is designed
to fuse the aligned left view and right view images. We also
innovatively introduce deformable encoder in the Fusion Net,
which allows for better error correction of the results in warp
net. The experimental results show that our proposed method
can obtain stereo HDR image with good visual quality.

I. INTRODUCTION

Nowadays, photography is an important part of our daily
life. However, the common commercial cameras can only cap-
ture low dynamic range (LDR) image, which causes the image
to be far less detailed than the human eye can capture. There-
fore many traditional high dynamic range (HDR) technologies
were invented to fill this gap[1,2,3]. Most of them need a series
of LDR images with different exposures as inputs, and then
merge the inputs into one HDR image as output [1]. During
this process, if there is only one input device, and the objects
in the scene are moving, it will inevitably result in the input
LDR images being mismatched, further leading to ghosting in
the generated HDR images. A popular idea is to use algorithms
to eliminate the impact of this mismatch [2,3]. There is also
another idea that simultaneously collects images with different
exposures by using additional input devices to reduce the
mismatch caused by the object movement [4,5]. This idea not
only solves the problems caused by object motion, but also
introduces additional benefits; such stereoscopic images or
videos generated with this method can be naturally applied to
scenarios such as VR/AR. Based on this idea, some researchers
have made many attempts. Compared to HDR methods, Stereo
HDR(SHDR) methods have extra steps of stereo matching and
image warping. Different handcrafted features and cumulative
functions [6] have been tried to generate the disparity map.
Based on the disparity map, image warping can be applied

to the input images to get the warped images, which will be
then fed to the appropriate HDR algorithm to produce the
final result. Recently deep learning has achieved impressive
success in a variety of fields. Several key steps in SHDR
are available with deep learning solutions. There have been
researchers who proposed deep learning methods of SHDR.
Chen et al.[7] used VET-GAN to generate the warped images
directly without explicitly generating disparity maps. They
then used another HDR fusion GAN to perform the HDR
fusion. Although they achieved good results; such an approach
has at least two drawbacks. The first one is that this method
does not explicitly generate a depth map of the scene, which
is certainly a waste. The second one is that this method is
not an end-to-end network, which makes it difficult to achieve
optimal performance of the framework.

In this paper, in order to exploit the high performance of
deep learning while compensating for the shortcomings of
previous works, we propose a new end-to-end network for
multi-view HDR imaging. Specifically, imitating the steps of
the traditional method, our multi-view multi-exposure fusion
network(MVMEF-Net) is composed of two sub-networks:
Warp-Net and Fusion-Net. In Warp-Net, we perform stereo
matching on the initial input images to estimate the disparity
map and image warping is then performed based on this
disparity map. The results of Warp-Net will be fed into Fusion-
Net to generate the final result. The overall network is trained
in an end-to-end manner.

Our work has three main contributions: 1) We propose a
novel end-to-end learning network for multiple-view multi-
exposure image fusion. 2) Our proposed method generates an
accurate disparity map, which can be used to generate the
depth map of the scene or be used for some other purposes.
3) We propose a component called Deformable Encoder in
the Fusion-Net where the Deformable Encoder plays a role of
error correction when the inputs have mismatches. This may
be an inspiration for other image fusion tasks.

II. RELATED WORKS

A. Stereo matching

Stereo matching is a classical problem which is related to
the depth estimation of stereo images. Many stereo matching
methods have been proposed. A traditional stereo matching
algorithm [8] needs to compute matching cost, aggregate
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matching cost, optimize disparity map and refine final re-
sult. Hirschmuller proposed the semi-global matching(SGM)
algorithm [6], which has become the standard optimization
algorithm for traditional stereo matching methods. Even the
early deep learning approaches tried to use CNN features to
compute the matching cost and applied SGM to optimize the
disparity map. Zbontar and LeCun [9] proposed a method
using deep Siamese network to predict the similarity within
image patches. Recently, with the development of deep learn-
ing, end-to-end approaches have been proposed. Based on the
FlowNet [10] proposed by Dosovitskiy et al., Mayer et al.
[11] presented an end-to-end DispNet for the estimation of
disparity map. Another important improvemen of this task is
the introduction of 3D convolution and cost volume into the
stereo matching network. Kendall et al. [12] proposed GC-
Net, which was the first network for stereo matching using
extracted deep features to construct cost volume and using 3D
convolutional layer to exploit contextual information. Based
on their works, many new approaches have been proposed.
Chang et al. [13] proposed PSMNet in which a pyramid
pooling module and a stacked hourglass 3D CNN were used
to improve the performance. Their method achieved state-of-
the-art performance on the KITTI dataset.

B. HDR

The traditional methods for HDR image acquisition could
be divided into two main branches: reversing pipeline and
multi-exposure fusion. Debevec and Malik [1] tried to reverse
the camera pipeline and obtain the radiance of the scene
from the RGB image by estimating the camera response
function(CRF). After the HDR radiance map is constructed,
it is tone mapped into an RGB image that can be shown
on common display devices. Merten et al. [14] proposed a
technique which can directly assign weights to pixels of the
bracketed exposure sequence and fuse input images into a
final HDR image without the operation on radiance map. By
skipping the camera pipeline reversing, the entire process of
HDR image acquisition has been significantly simplified. For
static scenes, both of them can achieve good enough results,
and the main focus of research in recent years has been
on dealing with ghost caused by misalignment for various
reasons, such as the movement of scene objects. The popular
idea is to accept images with moving objects as input and
to eliminate the effect of object motions by algorithms [2,3].
Based on this idea, many deep learning approaches have also
been proposed in recent years. Another idea is to use multiple
input devices to minimize the object motions in the input
image. By establishing a good matching relationship between
LDR images of different views, they can be better blended
into HDR images without considering the object motions in
the input images [4,5]. However, deep learning studies based
on this idea have appeared less frequently in recent years.
Chen et al. [7] is among the few who have done this with
deep learning methods.

III. PROPOSED METHOD

This paper proposes a novel end-to-end multi-view multi-
exposure network which accepts an LDR stereo image pair as
input, as shown in Fig. 1.

A. WarpNet

The WarpNet is designed to accomplish two tasks of stereo
matching and image warping, which means that the outputs of
this module are accurate disparity maps and warped images.
The WarpNet have two parts to fulfill our requirements. The
first half of WarpNet is a stereo matching network [13] which
can generate the disparity maps we need, while the second half
uses the DBI module to generate warped left view image as
the input for the next step. The main structure is shown in Fig.
2. The SPP module is used for incorporating global contextual
information into image features. These feature maps are later
used to construct the cost volume.

The Cost Volume is used to learn matching cost estimation.
In this network, it is composed of SPP features by concatenat-
ing left and right features according to their correspondence
from disparity 0 to the preset maximum value. In this manner
we can obtain a 4D Tensor with shape height × width ×
disparity×feature size, which is supposed to carry absolute
feature representations with semantic information rather than
relative representations between features. Given this kind
of cost volume, three-dimensional convolutional layers are
used to refine this representation due to its ability to learn
feature representations from the height, width and disparity
dimensions. The last layer of the 3D CNN is a single 3D
convolution with a single output channel. This cost volume
is then upsampled to obtain a final cost volume with size
H × W × D. After obtaining such a cost volume, disparity
regression is applied to generate a dense disparity map. For
each disparity d, the probability volume is converted from
taking the negative of predicted costs cd and normalized with

Fig. 1. The overall structure of the proposed MVMEFNet. The MVMEFNet
consist of 2 sub-network. WarpNet accepts a pair of left view and right view
images, which are then processed into a pair of warped left view images and
right view images. The processed image pairs are further fed into FusionNet
for estimating the final HDR image.
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Fig. 2. The detailed structure of the WarpNet. The SPP module is a feature extraction module which can incorporate features in different level and has been
proved to be effective in task of stereo matching. Note that constructing cost volume, passing through a 3D CNN, performing a disparity regression is a
standard process for stereo matching which. DBI is an abbreviation for the Differentiable Bicubic Interpolation.

the softmax operation, σ(·). Then the predicted disparity d̂ is
defined by soft argmin, as

d̂ =

Dmax∑
d=0

d× σ(−cd) (1)

This function is fully differentiable. It is proved in [13] that
using this function allows us to predict disparity in a regression
way and can improve performance.

Assembling disparity d̂ in all positions, we get the disparity
map D̂ with resolution of H×W . To make our final network to
be end-to-end trainable, the differentiable bicubic interpolation
[16] is employed to implement the process of warping. Using
the disparity map D̂ and the left view image IL as inputs of
the DBI module, the warped left view image ILw can be finally
obtained.

B. FusionNet

In the previous sub-network, we have obtained the warped
left view image ILw which is supposed to be well aligned with
the right view image IR. The purpose of our FusionNet is to
accept a pair of aligned images ILw and IR as input and then
output final HDR images Ĥ . In order to achieve this goal well,
our FusionNet consists of two parts: the attention module and
the merging module [17]. The structure of this network is
shown in Fig. 3. When an aligned image pair is provided as
input, it first goes through a deformable convolutional layer to
extract features, as

Z1 = DConv(ILw), Z2 = DConv(IR) (2)

Both Z1 and Z2 have 64 channels. The Deformable Convo-
lutional Network(DCN) was first proposed in [18]. It was
proved that by replacing the traditional CNN with DCN,
the object detection and semantic segmentation tasks can get
a performance improvement. It is also easy to replace the
2d convolutional layer with deformable convolutional layer
because they have the same input and output. The experiments
in ablation studies will further show the effectiveness of the
deformable convolutional layer in our task. After feature maps
Z1 and Z1 are extracted, they are concatenated and then passed
into a two-layer convolutional neural network Attention with
a final sigmoid activation:

W = σ(Conv(Concat(Z1, Z2))) (3)

As a result, an attention map W in the range between 0 and 1
can be obtained. The attention maps have the same channels
with the input feature maps and then are point-wise multiplied
with left feature map:

Z
′

1 = W ⊙ Z1 (4)

The attention-guided left feature maps Z
′

1 and right feature
maps Z2 are then concatenated to a new feature maps Zm

and passed to the merging module:

Zm = Concat(Z
′

1, Z2) (5)

The dilated residual dense block(DRDB) was proposed in [17]
and proved to be effective in HDR imaging. In this work, 3
sequential DRDBs are used, and each DRDB consists of 6 2-
dilated convolutions[19]. Before reconstructing the final HDR
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Fig. 3. The detailed structure of the FusionNet. Here we use a single deformable convolutional layer to extract features. The effectiveness of deformable
convolutional layer is shown in our experiments. The attention module is exlude the regions with poor quality in warped left view image. The concatenated
features is passed through 3 dialated residual blocks(DRDB) and then summed with skip connected right view features. The final HDR image is obtained by
2 layer convolution without any post-processing .

image, a global skip connect is used to make the merging
module tend to learn the residual features. This strategy is
inspired by the super-resolution tasks[20] and its effectiveness
in HDR imaging has also been studied in [17]. The final
feature maps Zh is then passed through two convolutional
layers with activations. The final HDR image Ĥ is estimated
without any extra post-processing or tone mapping.

Ĥ = Conv(Zh) (6)

C. Loss function

As stated above, our proposed MVMEFNet estimates dis-
parity map D̂ and final HDR image Ĥ as our outputs. Our
network is trained by minimizing ℓ1 distance between the
outputs and the ground-truth disparity and ground-truth HDR
image respectively:

ℓ = ∥D̂ −Dgt∥1 + ∥Ĥ −Hgt∥1 (7)

where Dgt is the ground-truth disparity map and the Hgt is
the ground-truth HDR image.

IV. EXPERIMENTS

A. Setups and training details

As our work requires inputs of stereo images with different
exposures, we use Middlebury 2014 stereo Dataset[21] to
construct our training and testing datasets. The official Middle-
bury dataset only offers disparity ground-truth, therefore we
use a recently proposed static MEF method[22] to generate
the ground-truth of our final result. The Middlebury dataset
provides about 22 scenes and there are about 4 different
lighting conditions for each scene, and 3-8 exposure settings
for each lighting condition. We choose 18 scenes for training
and 3 scenes for testing. As a result, there are about 50
training image sets and 10 testing image sets. For each image
set, we manually choose the input pairs and generate the
corresponding ground-truth with them. All chosen input image
pairs follow the pattern that the left view image is over-
exposed and the right view image is under-exposed. Since the
original maximum disparity is outside of our capacity, we first
downsamples the original image to make its height and width

half. We randomly crop them into patches with the size of
256*512 as the input of our network. In the training stage, we
use the Adam optimizer and the learning rate is set as 1e-3.
In the testing stage, the PSNR and SSIM values are computed
as reference for quantitative analysis and comparison.

B. Comparisons with SOTA

Since the VET-GAN [7] is the only end-to-end deep learning
multi-view HDR method and there is no comparison with other
methods in their paper, we only compares the proposed method
with VET-GAN. They uses the same dataset as our work. Table
1 shows the detailed quantitative results. On the same dataset,
our method achieves a PSNR improvement of 0.41 and an
SSIM improvement of 0.03. In addition, as mentioned before,
our method can generate accurate dense disparity maps. Here
we show an example of our results in Fig. 4. Our method has
good performance in both the over-exposed(OE) areas such as
the bottom of the chair and under-exposed(UE) areas such as
the surface of the guitar.

C. Ablation Studies

To demonstrate the effectiveness of the Deformable convo-
lutional layer, we compare the average PSNR/SSIM over the
test set under the same training conditions in Table I. We can
see that the average PSNR values increase about 2.0544 and
the average SSIM increase about 0.0167 by replacing the 2D
convolutional encoder with deformable convolutional encoder.
In Table II and Table III, we show detailed quantitative results
on each of the scenario in the test set. In addition, visual results
of these 2 methods are shown in Fig. 5. The overall color of
results with DCN is closer to that of the original image. The
results with DCN have less ghosting artifacts, such as the area
in the upper left corner.

TABLE I
QUANTITATIVE COMPARISON

Method PSNR SSIM
VET-GAN 28.8665 0.91

Ours 29.2798 0.91
Ours w/o DCN 27.2254 0.89
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(a) left view inputs (b) right view inputs (c) ground-truth images (d) our results

(e) left view over-exposed areas (f) right view under-exposed areas (g) over-exposed areas of results (h) under-exposed areas of results

Fig. 4. Visual presentation of samples of our results

(a) inputs

(b) ground truth

(c) result w/o DCN (27.46) (d) result w DCN (29.91)

Fig. 5. Comparison of different convolutional layer.

V. CONCLUSIONS

In this paper, a novel end to end learning method for
multi-view multi-exposure fusion is proposed. The MVMEF-
Net consists of 2 sub-network. The first sub-network could
generate a disparity map and a warped left view image. The
second sub-network accept warped left view image and right
view image as input and then generate the final output. By
combining these 2 sub-network, the whole network can not
only be trained with end-to-end manner, but also outperform
other methods of these 2 individual tasks.

TABLE II
QUANTITATIVE COMPARISON(PSNR/SSIM) ON EACH SCENARIO

Method Bicycle Classroom Piano
MVMEFNet 28.79/0.91 29.96/0.89 28.96/0.88

MVMEFNet w/o DCN 27.40/0.91 26.79/0.92 27.53/0.90

TABLE III
QUANTITATIVE COMPARISON(PSNR/SSIM) OVER DIFFERENT LIGHT

CONDITIONS ON CLASSROOM

Method L1 L2 L3 L4
MVMEFNet 32.64/0.92 28.89/0.90 28.52/0.93 29.80/0.93

MVMEFNet w/o DCN 30.84/0.93 26.34/0.88 26.69/0.85 23.31/0.91
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