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Abstract—Video surveillance has drawn much interest in
monitoring physical assets, spaces and events over time for
detection of threats as well as business and process monitoring
purposes. However, the rising number of recorded videos has
significantly increased the time and effort in manual event
analysis and video content management. Therefore, automatic
moving object detection is of great importance. Nowadays, for
storage and transmission purposes, video usually appears in the
compressed form. Therefore, in this paper, an automatic moving
object detection method is proposed for HEVC video. Specifically,
the number of bits spent on coding a frame, which can be
extracted during encoding or retrieved from an encoded video
bit stream, is exploited as the key feature for moving object
detection. In addition, temporal sub-layering feature of HEVC
is utilized to reduce the number of frame to be processed, which
in turn magnifies the energy of the coded video frames without
losing most of the predicted information. A coarse background
/ foreground mask is then formed based on bit consumption,
and it is further refined via post processing to remove noise
and to smooth the mask image. The proposed method achieves
encouraging results in detecting slow moving objects, even with
dynamic background.

I. INTRODUCTION

Moving object detection in video can be utilized for pur-
poses of event analysis and content management. These ap-
plications include abnormal event detection [1], action recog-
nition and classification [2], traffic monitoring [3], passenger
counting [4], video indexing, content searching and retriev-
ing [5], to name a few. The increased crime rate and security
threat all around the globe have driven a continuous growth
of video surveillance in various places including public areas,
community infrastructures, commercial or private buildings.
The videos recorded in Closed-Circuit TeleVision (CCTV) and
Internet of Things (IoTs) for monitoring daily activities have
resulted in a large volume of visual-based data. This ever-
increasing volume of visual data has resulted in significant
increase in time and effort required to search and retrieve
the desired video contents. Moving object detection plays an
important role to enable more effective surveillance processes,
better content management, as well as more accurate and
credible analysis.

Without loss of generality, moving object detection can
be performed by using the raw video sequence (i.e., un-
compressed) or the encoded video bit stream with partial
decoding. For the former, Guo et al. propose a multi-layer
adaptive block-based background subtraction and pixel-based
classification method to detect moving object in the spatial

domain [6]. The proposed method is capable of removing
most of the dynamic background and solving the deficiency
of blocking effect. Cuevas et al. apply a spatio-temporal non-
parametric background model for moving object detection
in video sequence recorded by a moving camera [7]. Lee
et al. propose a background-subtraction method by using
background sets to detect objects from dynamic background
with the idea of image- and color-space reduction [8]. In
another work, Huang et al. propose an optical flow based
motion detection framework for real-time motion detection in
non-stationary scenes by treating the distribution of the optical
flow field for background as a quadratic function of the point
coordinates [9]. While the performance is better in general,
the methods designed for raw video sequence require higher
computational power because of the large number of pixels to
handle, as well as the extra space (even temporary) needed to
store the decoded video frames.

On the other hand, many videos, if not all, are encoded in a
compressed form these days by following certain standards
such as MPEG-2 [10], H.264/AVC [11] and HEVC [12],
which achieve a compression ratio of 31 : 1, 500 : 1 and
1000 : 1, respectively. As such, researchers investigate into
different techniques to achieve moving object detection by
analyzing the encoded video bit stream directly. In this context,
the syntax elements of the coding standard are commonly
exploited to detect moving object. These syntax elements
include motion vector (MV), block structure, prediction mode
as well as transformed coefficient. Among them, MV is often
analyzed for moving object detection due to its very purpose
in video coding, i.e., motion estimation. For example, Li et
al. derive motion intensity count from MVs to serve as an
indicator for detecting any abnormal events [13]. Moriyama et
al. propose to amplify the MVs by sub-sampling HEVC video
sequence in the temporal axis and separate the objects from
background by using adaptive thresholding [14]. Samaiya et al.
utilize MV clustering and block partitioning modes to achieve
foreground segmentation in surveillance HEVC video [15].
Jaballah et al. use syntax elements including MVs, block
types and transform coefficients for object detection in video
encoded in the H.264/AVC and HEVC formats [16]. Instead of
relying on MV, Laumer et al. analyze the type of macroblock
in H.264/AVC encoded video then assign weights to the
macroblock types and partition modes to determine whether a
block is classified as part of a moving object [17]. They also
exploit temporal dependencies between frames to improve the
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Fig. 1: Flow of moving object detection process.

detection accuracy. Recently, Alizadeh et al. propose a moving
object detection method based on Conditional Random Field
(CRF) for HEVC video [18]. In their work, MV, partitioning
mode and the number bits spent on encoding a given block are
extracted from the HEVC bit stream. After removing outlier
MVs, the remaining MVs are copied to the I-blocks based
on their neighboring blocks. The MV, partitioning mode and
the number of bits spent are used as the input variables to
the CRF model, which is updated for every frame in order to
detect object.

Although many methods for moving object detection have
been proposed, they are either (i) designed for the previous
generation of video coding standards, or; (ii) complex in na-
ture. HEVC achieves higher compression ratio in comparison
to the previous video coding standards via effective removal
of redundant information, both spatially and temporally. As
a result, moving object detection is more challenging in
HEVC since most of the information is removed by the more
sophisticated prediction and motion estimation techniques
introduced in HEVC. In particular, there are limited methods
focusing on fast feature extraction for moving object detection
in HEVC video, which is a format expected to gain more
market share in the near future. Hence, this paper proposes a
light-weight moving object detection method in HEVC video,
where the output can be subsequently used in various computer
vision applications. Specifically, the number of bits spent on
coding the video is extracted as the feature to form a coarse
background / foreground mask. Subsequently, post processing
(i.e., morphological operations) is performed to remove noise
and to smooth the mask image. The proposed method involves
lightweight processes which only need to compute the number
of bits spent on coding each coding units (CUs), which is
straightforward to implement.

II. PROPOSED METHOD

In this work, we put forward a moving object detec-
tion method based on the number of bits spent (i.e., bit
consumption) on coding a HEVC video [12]. The general
flow of processes in the proposed method is as illustrated
in Fig. 1. Recall that HEVC adopts quadtree-based variable
block size block partitioning structure, where each video frame
is partitioned into multiple blocks called coding tree units
(CTUs). Specifically, CTU is the largest coding block used for
prediction. Each CTU is subsequently split into multiple CUs,
where the size ranges from 64 × 64 to 8 × 8. In general, the
amount of bits consumed by a block is highly correlated to the
predicted information and the prediction error/residual energy.
The cost of prediction and coding the residual depends on the
video content and it varies from block to block. Basically, a

Fig. 2: Illustration of temporal downsampling with α = 2.

block with higher bit consumption indicates that it has more
energy, and vice versa. Therefore, bit consumption for each
coded block can be extracted to infer some information about
the energy due to activity, detail, texture and motion in the
video frame, which can be subsequently utilized for moving
object detection. However, there is a situation where informa-
tion is missing or insufficient (e.g., prediction error/residual)
in the compressed video, especially for video coded at high
frame rate. Specifically, when most CUs are coded with a
small number of bits or even no bits at all, only a portion
of the object or nothing at all can be detected. Since HEVC
standard supports the temporal sub-layering feature, temporal
downsampling can be performed during encoding to reduce
the frame rate, which in turn magnify the energy of the coded
video frames without losing most of the predicted information.

The temporal down-sampling factor α reduces the resolution
of the time axis t through ∆t = t/2α. An illustration of
temporal down-sampling in reducing temporal resolution of an
input stream is depicted in Fig. 2, where every 4-th frame is
processed. The prediction error/residual is formed by comput-
ing the difference between the original block and its predicted
information. To address the challenge of limited information in
the compressed domain, we examine and compare the pixels
reconstructed from the residual. Unlike the pixel reconstructed
from the original residual as shown in Fig. 3(c), the residual
after down-sampling with α = 2 as shown in Fig. 3(d)
can provide more detail. The energy from the residual is
further enriched by information extracted from the prediction
parameters, which in turn results in more detail to form a
better mask image as shown in Fig. 3(f). The morphological
closing operation is then performed to obtain the final mask,
where Fig. 3(g) and (h) are produced from Fig. 3(e) and (f),
respectively.

Next, the number of bits consumed for encoding the (i, j)-th
CU, i.e., bi,j , is computed. Here, the number of bits consumed
for encoding a CU over the entire frame is non-linearly scaled
by using the logarithmic function. The logarithmic values have
a wider range and they are more distinguishable for further
analysis based on energy consumption per CU. In particular,
the ratio εi,j is computed as

εi,j =
255× log2(bi,j)

max{log2(bi,j)}
. (1)

For our objective of detecting moving object, the (i, j)-th
block in the k-th frame fki,j is set as either foreground (‘1’)
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(a) 704-th frame (c) Original residual (e) Original mask (g) Closing from (e)

(b) Ground truth (d) Residual after down-sampling (f) Mask after down-sampling, fk
b (h) Closing from (f), fk

b,c

Fig. 3: Comparison of residual energy, intermediate mask and final output mask before and after down-sampling.

when εi,j 6= 0 or background (‘0’) when εi,j = 0. In essence,
fk is a mask (binary image) of dimension M ×N when the
dimension of the input HEVC video is 4M × 4N .

Subsequently, the post-processing tasks are performed to
smooth the edges, fill the holes of the detected objects and
remove noise in order to improve the detection accuracy of
the moving object. Specifically, the gray level of each pixel
is replaced by the median of the pixels based on the 3 × 3
neighborhood. Subsequently, a bilateral filter [19] is utilized
to suppress the variation of intensity value from one pixel to
another in fk. Specifically, it replaces the intensity of each
pixel with a weighted average of the intensity values from its
adjacent pixels, where the weights are inversely proportional
to the distance from the center of the neighborhood. Finally,
the closing operation (i.e., dilation followed by erosion) of the
image fkb (i, j) is performed by a 3×3 rectangular structuring
element (denoted by s) on the detected object to smooth
the contour of the object and to fill small gaps within the
foreground objects. Here, the closing of the image fkb (i, j) is
defined as:

fkb,c(i, j) · s = (fkb (i, j)⊕ s)	 s, (2)

where ‘·’, ‘⊕’, and ‘	’ denote the closing, dilation and erosion
operations, respectively. Figure 4 shows the transition of the
mask image for the 28-th frame in the test video foreman,
starting from its first appearance f28 to the final output f28b,c.
It can be observed that the mask image f28b (i.e., after applying
filtering) has smoother edges. Subsequently, the small holes in
the object is filled in the mask image f28b,c, i.e., after applying
the closing operation.

The proposed method overcomes the challenge of lack of
information (e.g., prediction error/residual) in the encoded
video bit stream. Our method is also computational simple, and
hence the process is greatly beneficial for energy-constrained
devices such as those used in smart home appliances. Note

that although both the proposed method and Alizadeh et al.’s
method [18] consider the number of bits spent on coding a CU,
our approaches are different in the following manner: 1. we
apply temporal down-sampling to increase the variation of bits
consumed in encoding CUs in addition to reducing the number
of frames to be processed, while [18] applies partitioning mode
and MV to improve the detection accuracy; 2. we utilize
median and bilateral filters to reduce noise and to smooth
the edge, while [18] removes the global motion based on the
difference between MV in a block and the average MVs in the
frame and it also utilizes iterated conditional mode to optimize
the classification results, and; 3. we perform morphological
operation to construct the output mask image, while [18]
calculates the weighted average MVs of the neighboring
blocks in order to assign a MV to the intra-coded block.

III. EXPERIMENTAL RESULTS

The proposed method is implemented by modifying the
HEVC reference software HM-16.22 [20]. For experiment
purposes, the following setting is used: Low-delay P (LDP)
main configuration settings with group of pictures (GOP)
structure of 4, frame rate of 30 fps, and the quantization
parameter (QP) set to 30. The remaining parameters are set to
the HM default configuration. In addition, the temporal down-
sampling factor α = 2 is set. The experiments are conducted
by using a PC with AMD Ryzen 5 3500U 2.10 GHz CPU
and 8GB of RAM running on a 64-bit Windows 10 operating
system. The video sequences from the CDNET 2014 video
dataset [21], [22] and [23] are utilized to evaluate the per-
formance. These sequences include BusStation, Office, Pedes-
trians, PeopleInShade, PETS2006, Foreman, BasketballDrill
and BasketballDrive. The results are measured in term of
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(a) Original 28-th frame (b) Mask image, f28 (c) Smoothing filter, f28
b (d) Closing, f28

b,c
(e) Ground truth

Fig. 4: Transition from the original video frame to the final output mask and ground truth for the 28-th frame in the Foreman
test video sequence by applying median filter, bilateral filter and closing.

TABLE I: Comparison of different methods in the terms of
F1, Precision and Recall.

Video sequence Method Precision Recall F1

Office [17] 0.72 0.50 0.59
(360× 240) [15] 0.96 0.43 0.59

Proposed 0.83 0.74 0.77
BusStation [17] 0.69 0.63 0.66
(360× 240) [15] 0.81 0.29 0.42

Proposed 0.80 0.83 0.81
Pedestrian [17] 0.31 0.96 0.47
(360× 240) [15] 0.97 0.39 0.55

Proposed 0.75 0.86 0.80
PeopleInShade [17] 0.72 0.82 0.77
(360× 240) Proposed 0.70 0.86 0.77
PETS2006 [17] 0.59 0.65 0.63
(720× 576) [15] 0.94 0.48 0.63

Proposed 0.72 0.74 0.73
Foreman [17] 0.68 0.99 0.81
(352× 288) [18] 0.89 0.92 0.91

Proposed 0.87 0.78 0.82
BaseketballDrill [18] 0.81 0.88 0.84
(832× 480) Proposed 0.64 0.87 0.74
BasketballDrive [18] 0.87 0.91 0.89
(1280× 720) Proposed 0.71 0.86 0.78

Precision, Recall and F1, which are defined as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2× Precision×Recall
Precision+Recall

, (5)

where TP, FP , and FN denote the true positive, false posi-
tive, and false negative, respectively.

The results are recorded in Table I. On average, our pre-
cision, recall and F1 are 0.76, 0.83, and 0.78, respectively. It
is observed that the proposed method achieves better perfor-
mance for video sequence containing small to medium moving
objects. A potential reason is that the background in these
videos is coded by using relatively larger blocks and hence
less bits are consumed in coding the residual of the motion
estimated background regions. In other words, blocks with
lower number of bits are treated as background. In contrast,

the moving object is more complex in term of texture when
it is smaller in size. More importantly, the energy of the
moving object is magnified after the temporal down-sampling
is performed. Therefore, the distribution of the number of
bits consumed for coding CUs is concentrated in the moving
object. It should be noted that α can take a different value
(e.g., 1, 2 and 3) but the results do not change significantly
(viz., ±3%). In fact, when α increases, the proposed method
can be executed in a shorter period of time since there are less
frames to process, and vice versa. However, it is suggested to
set α to process < 50% of the frame.

For completion of discussion, we also compared our re-
sults against those achieved by [15], [17] and [18]. Results
suggest that the proposed method outperforms Samaiya et
al.’s method [15] and Laumer et al.’s method [17] in term
of accuracy. Our performance is inferior in comparison to
Alizadeh et al.’s method [18], where our performance is
lower by 0.14, 0.09 and 0.12 for precision, recall and F1,
respectively. However, it is noteworthy that our method is
computationally simpler and straightforward, which can bene-
ficial for applications requiring low turn-around time as well as
devices with constrained computational power or small battery
capacity. In contrast, Alizadeh et al.’s method [18] considers
more features including partitioning mode, bit consumption,
and motion vector. Furthermore, more complex processes are
utilized to remove outliers. As an example, our proposed
method requires an average of 0.18s while [18] requires
0.75s for processing a HD frame. Moreover, to improve the
detection accuracy, the CTU size in [18] is set to 32 × 32
when experimenting with low resolution videos (e.g., SD and
CIF formats), because a larger CTU allows larger CUs to be
coded, which will reduce the detection accuracy for any object
smaller than a CU. On the other hand, in our experiments, the
CTU size remains the same, i.e., 64 × 64, and our proposed
method still performs well. It should be noted that the ground
truth for the video sequences foreman, BasketballDrill and
BasketballDrive are not available and hence we created our
own ground truth (available for download at [24]), which could
be a potential factor for our method being inferior. All in all,
although the proposed method exhibits mixed outcomes when
compared to the conventional methods, our method is based
on simple operations which are light-weight in nature.
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(a) Original frame

(b) Ground truth

(c) Proposed

Fig. 5: Video sequences considered for experiments in this work. From left to right column: Office, BusStation, Pedestrian, Peo-
pleInShade, PETS2006, BasketballDrill and BasketballDrive).

IV. CONCLUSION

In this work, temporal sub-layering feature and bit size
consumption in encoding the coding units are exploited to
detect moving object in HEVC video. The proposed method
overcomes the challenge of lack of information in the encoded
HEVC video bit stream. Specifically, the energy of the coded
video frames is magnified by reducing the number of video
frames to be processed by using temporal sub-layering.

The feature, i.e., number of bits consumed in coding CU,
is expanded by using a logarithmic function to highlight
the differences of bit consumption per CU. After the coarse
mask is constructed, post-processing operations are performed
to remove noise and to smooth the extracted objects. The
proposed method has simple computations and operations,
and hence it is overall a light-weight method. Experimental
results demonstrate that the proposed method can effectively
detect moving object, and it performs well in video with
moving object of small to medium sizes. In addition, the
proposed method exhibits comparable performance when it
is benchmarked against the conventional methods.

For future work, we aim to improve the precision of the
proposed method and explore potential deployment of the
proposed method for real-time or time-critical applications.
We also want to explore moving object detection in other
video coding standards such as VVC and AV2 by using the
bit consumption feature as a starting point.
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