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Abstract—In this paper, we propose a novel approach for
sentence-level lip-reading by using hidden Markov model (HMM)
framework. To calculate the posterior probability of HMM states,
the architecture of convolutional neural network based visual
module followed by multi-headed self-attention Transformers is
designed. Recently, 3D convolution for visual module to extract
temporal features is popular for lip-reading tasks, which can
achieve a higher accuracy at the cost of more computations
compared with 2D convolution. This motivates us to invent plug-
and-play compact 3D convolution unit called “Stingy Residual
3D” (StiRes3D). We use heterogeneous convolution kernels for
different input channels, and apply channel-wise convolutions
and point-wise convolutions to make the block compact. Eval-
uated on Lip Reading Sentence2 (LRS2-BBC) dataset, we first
demonstrate that our HMM-based approach outperforms con-
nectionist temporal classification (CTC) based approach with the
same visual module and Transformer architecture, yielding a
word error rate reduction of 1.9%. Then we empirically show
that the proposed approach with StiRes3D based visual module
can achieve obvious improvements in terms of both recognition
accuracy and model efficiency, over the Pseudo 3D network with
a compact 3D convolution design. Our approach also outperforms
the current state-of-the-art approach with a word error rate
reduction of 1.5%.
Index Terms: lip-reading, visual speech recognition, compact
3D convolution, hidden Markov model, transformer

I. INTRODUCTION

Lip-reading is the task to recognize what people are saying
from image alone without audio information. Lip-reading is
thought as a challenging task due to the ambiguity introduced
by the fact that a visime [1] can be mapped to many different
phonemes [2]. Despite the difficulty, a strong lip-reading
system can be pretty useful: helping to understand what is
being said in a noisy environment [3], [4]; recognizing wake-
up word from multi-talker simultaneous speech; and improving
mobile interaction with silent command [5].

Conventional approaches usually consist of a spatial feature
extractor and followed by a sequential model. More details
about these approaches are in [6]. As for deep learning method,
a number of works use convolutional neural network (CNN)
to predict phonemes [7] or visemes [8] from still images.
Long-short term memory recurrent neural networks (LSTMs)
with handcrafted features are frequently used to recognise
full words and short phrases due to the lack of training data
[9], [10]. [11] first proposes a residual network with 3D
convolutions to extract more powerful representations. The

standard ResNet architecture is modified by changing the first
convolutional and pooling blocks from 2D to 3D, and this
architecture is widely used in lip-reading tasks [12]. As for the
sentence-level lip-reading, [13] designs a lip-reading pipeline
that uses a network to output phoneme probabilities. And
then convert the phoneme distributions into word sequences
with finite state transducers. [3] adopts a network to output
character probabilities which is trained with connectionist tem-
poral classification (CTC) [14] loss or sequence-to-sequence
(seq2seq) [15] model. Although 3D convolution improves the
performance of the network, it brings about huge computa-
tional complexity. Simply adding 3D convolutions will make
the network too tedious for application, meanwhile it will
easily cause overfitting due to the complex structure.

Many researchers work on compressing 2D convolutional
block, like Heterogeneous Convolutions(HetConv) [16], Par-
simonious Convolutions(ParConv) [17] and Depth-wise Sep-
arable Convolutions(DSConv) [18], [19], [20] which propose
different compact architectures of convolutional block. As for
compressive 3D convolutions, the research efforts are mainly
focusing on separating the spatial and temporal convolutions
[21], [22], [23]. These methods are useful but restricted. They
divide 3D convolutions into spatial and temporal convolutions,
so the compression rate is fixed. However in actual applica-
tions, we might need to make a trade-off between compression
rate and the performance. Another type of compression for
convolutional neural networks is pruning, including the work
for 2D convolution [24], [25], [26] and 3D convolution [27].

In this work, we focus on the sentence-level lip-reading and
conduct experiments on Lip Reading Sentence2 BBC (LRS2-
BBC) dataset. We introduce a new pipeline for lip-reading.
First we use a CNN to extract the visual features of the
input video. Then we predict the posteriori probabilities of
hidden states by 6-layer multi-head self-attention Transformer
together with a fully connected layer. We use hidden-Markov-
model (HMM) [28] and an external language model to get
the sentence with highest probability. Using this pipeline, we
compare how different types of CNN influence the perfor-
mance and size of the networks. We use the CNN consisting
of a 3D convolutional layer followed by a 18-layer residual
network(ResNet-18) as the baseline which is also the baseline
of many proposed architectures for lip-reading [29], [30]. This
pipeline outperforms CTC-Transformer approach [3] which
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Fig. 1. Proposed network architecture.

has the same visual module and Transformer as ours. In order
to get better performance and smaller model, we introduce a
novel compact 3D convolution architecture called Sti3D which
is the main contribution of this work. We first use channel-
shuffle [31] to let the information flow in different channels
and sent half of the input channels to the lower half to go
through point-wise convolution. The other half is sent to a
point-wise convolution with ω× more feature maps before
sent to channel-wise convolution [32], [33] followed by a
point-wise convolution, so that it provides control over the
complexity of the model. We also make innovations on adding
a residual shortcut (StiRes3D) within the convolutional block
to make up for the information loss when we use separable
convolutions to approximate the standard 3D convolutions to
get better performance. We further demonstrate the merits
of the proposed StiRes3D by comparing the performance of
different visual module based on whole 3D CNN (All3D) and
pseudo 3D CNN (P3D).

II. OUR PROPOSED APPROACH

The pipeline we proposed for sentence-level lip-reading
task uses the visual component as the input and the audio
component to create the transcript. We adopt the transcript, the
utterance of the audio stream, a dictionary, and the acoustic
model to transform the words to triphones. More specifically,
there are 6831 triphones with each modeling by a 3-state
HMM. We adopt the triphone states via a neural network
as shown in Figure 1 and the state alignments to calculate
the cross-entropy (CE) loss for training. In the decoding
state, we output the final prediction of the sentence with an
external language model and lip-reading HMMs. The best
performing model using this pipeline achieve a WER of 46.8%
on LRS2-BBC.

As shown in Figure 1, our proposed network architecture for
HMM-based lip-reading can be divided into two main parts.
The visual module takes image sequence around the mouth
area X ∈ RT×H×W as input to extract features F ∈ RT×512

where T denotes the number of frames of the input sequence,
and H , W denote the height and width of the input images,
respectively. The essential part which is highlighted with
yellow color is used to replace the standard ResNet18 to get
better performance and smaller model. In the second part we
use 6 multi-head self-attention Transformer layers where the

features we extract by visual module serve as key, query,
and value [35]. The Transformer takes the feature to generate
the state posterior probabilities with a fully connected layer
and HMMs. We get P = {p(st|xt)} where P denotes the
probabilities of hidden states for each frame. Finally, we adopt
an external 4-gram language model together with cascading
3-states HMMs each representing a triphone to compute the
sentence Ŵ with highest probability, which can be formulated
as the Bayesian decision problem:

Ŵ = argmax
W

p(W|X)

= argmax
W

p(X|W)p(W)
(1)

where Ŵ denotes the sentence we recognize from the T-frames
input image sequence X = {x1, x2, ..., xT }, each xt ∈ RH×W

is an image, and W = {W1,W2, ...,Wn} is the possible word
sequence. We can represent the formula in Eq 1 with the
mathematical principle of HMM:

p(X|W)p(W) =
∑
S

[
T∏

t=2

ast−1st

T∏
t=1

p(xt|st)

]
n∏

i=1

p(Wi|Wi−1,Wi−2, ...,W1)
(2)

p(xt|st) =
p(st|xt)p(xt)

p(st)
(3)

where S = {s1, ..., sT } denotes the hidden states sequence
corresponding to the given W. p(s1) is the initial state prob-
ability, ast−1st is the state transition probability from state
at frame t − 1 to state at frame t estimated, p(st|xt) is the
posteriori probability which is also the output of the network,
p(st) is the prior probability of st estimated from the training
set, and p(xt) is independent of the given sentence W.

A. Stingy 3D Convolution

The detailed architecture of a Stingy 3D convolution block
is shown in Figure 2(b). 3D convolution can be decomposed
to spatial convolution and temporal convolution [21], [22]. In
addition, the coupling between channel and spatial can be
decoupled [19], [20]. We apply this principle to the three
dimensions. As shown in Figure 2(c), the idea of different
types of 3D convolutions can be presented as matrix mul-
tiplication where elements in the matrix are 3D arrays and
the operations between elements are convolution instead of
multiplication. In three dimensions, the channel-wise convo-
lution can compress more because of the temporal dimension,
we will further explain it later. Since not all the channels’
information is needed in convolution, we can divide the input
channels into two parts. Half of those will go through the
channel-wise convolution block, and other half will go through
point-wise convolution. In other words, we use heterogeneous
convolution kernels, which overcomes the limitation of the
existing approaches that are based on efficient architecture
search and model compression [16]. Also, from the point of
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Fig. 2. Detailed Structure

view that letting the information adequately flow within all
the channels, we add channel-shuffle to the input. Moreover, in
order to provide control over the complexity of the convolution
block, we add a point-wise convolution with ω× feature maps.
[36] states that the set of layer activations forms a “manifold
of interest” from the input set, and the information encoded
in all individual channels actually lie in some manifolds. Only
parts of the channels to go through channel-wise convolution
would result in information loss in some channels, so we make
it up by adding a residual short cut to the Sti3D block. The
modified block is called StiRes3D.

Now we compare the theoretical compression rate between
our StiRes3D with a strong compression method P3D [22].
Assume that the input size to the 3D convolutional block is
T ×D×D×Cin, D is the size of the image, T is the number
of frames, and Cin is the number of input channels. The kernel
size of the 3D convolutional block is Tk×K×K×Cin, and the
number of such kernels is Cout. The computational complexity
for 3D convolutional block, it is

FL3D = TTkD
2K2CinCout (4)

TABLE I
COMPRESSION RATE OF DIFFERENT COMPACT 3D CONVOLUTIONS

Type Compression Rate
P3D 1/Tk + 1/K2

StiRes3D (6 + 3ω)/(4TkK
2)

For P3D convolutional block, it is

FLP3D = TD2K2CinCout + TTkD
2C2

out (5)

For StiRes3D convolutional block, it is

FLStiRes3D = TD2Cin(
3 + ω

2
Cout +

w

4
Cin +

w

2
TkK

2) (6)

In most situation, we can make a reasonable assumption that
Cin = Cout and Cout � ω. Then we can have the compression
rate comparing to the standard 3D convolutions of different
compact 3D convolutions in Table I. We observe that StiRes3D
has two main merits comparing with P3D. First, StiRes3D can
have better compression rate. Second, StiRes3D’s compression
rate can be controlled by adjusting ω.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1440



TABLE II
COMPARISON AMONG DIFFERENT NETWORKS

Network name WER Memory(MB) FLOPs (∗108)
ResNet18 51.8% 56.60 2.7049
All3D 49.7% 155.88 6.6091
P3D 48.5% 88.07 3.4205
StiRes3D(ω = 2) 46.8% 44.48 2.2286

III. EXPERIMENTS

In this section, we compare the performance of our proposed
HMM-based lip-reading approach with other approach and
StiRes3D based with other types of CNNs within HMM frame-
work. First we describe the training strategy. Our implementa-
tion is based on the Pytorch library [37] and experiments are
conducted on two TeslaV100 GPUs with 16GB memory. The
network is trained using the ADAM optimiser [38] with initial
learning rate of 10−4, and weight decay of 10−4. We keep
training until the CE loss stops decreasing on the validation
set, and we keep training for 6 epochs with learning rate
reduced by a factor of 2 for each epoch. Decoding is performed
with the method we introduced in Section 2. We conduct
the experiments on a large-scale English dataset, LRS2-BBC,
generated and presented in [3]. It contains hundreds of hours
of video with talking faces in the middle together with the
transcript of the sentences being said. The videos are from
a variety of BBC programs. Each video corresponds to a
sentence or a phrase which varies in length. The dataset
includes nearly 200 hours of videos, and we use the same
division of training, validation and test sets as described in
[3].

For all the experiments, we adopt the word error rate(WER)
as the criterion to evaluate the performance. WER is defined
as WER = (S + D + I)/N, where S, D and I are the number
of substitutions, deletions, and insertions we get from the
reference to the hypothesis, and N is the numebr of all words in
the reference. Since we use the same Transformer [35] for all
the proposed visual module, we only compare the complexity
of the visual modules i.e. the convolutional neural networks.
We employ two measures to evaluate the complexity of the
network. One measure is floating-point operations (FLOPs)
to evaluate the computational complexity of the CNN. As
the input size is the same for all the variants, the total
FLOPs of the convolutional visual module can represent the
computational complexity of the CNN. Another measure is
memory used for storage of the visual module to evaluate the
space complexity of the network. The CNN’s structure is based
on [11]. It applies 3D convolutions on the input image with
a filter width of 5 frames, followed by a standard ResNet-18
to decrease the spatial dimensions. The detailed architecture
is shown in Figure 2(a). The All3D denotes the 3D CNN that
replaces all the [3× 3] 2D kernel with [3× 3× 3] 3D kernels.
P3D and StiRes3D denote CNN that replaces the [3× 3× 3]
3D convolution with P3D-A [22] and StiRes3D, respectively.

A. Analysis on the performance

The results of different networks are listed in Table II. The
ResNet18 based visual module achieves a WER of 51.8%,
and outperforms CTC based approach with the same visual
module and Transformer architecture [3], yielding a WER
reduction of 1.9%. The results also demonstrates that in lip-
reading tasks applying more 3D convolutional block yields an
absolute improvement of 2.1% (ResNet18 vs All3D). Since
the lip movements and the words in a sentence are temporally
relevant, the results are quite reasonable. However, replacing
the 2D convolutional blocks with 3D convolutional blocks
prominently increases the computational and space complexity
of the network. All3D has 2.4× more FLOPs and nearly 3×
larger comparing to ResNet18. The huge memory cost and
FLOPs make it unacceptable for many applications. Moreover,
from Table III we observe that All3D’s structure is too
complicated and easy to overfit. It has a better training loss but
worse validation loss and WER comparing to StiRes3D. The
results imply StiRes3D helps to prevent overfitting, because
the decomposition of StiRes3D brings about more batch
normalization layers.

The experiments also show that StiRes3D is fully superior
to P3D and All3D in terms of lower WER, less storage, and
smaller FLOPs. Comparing to All3D, StiRes3D has about
3.5× and 3.0× compression rate on memory and FLOPs,
repectively. StiRes3D achieves great improvement over P3D
with 1.8× and 1.9× on memory and FLOPs. Meanwhile
StiRes3D has an absolute reduction of 1.7% over P3D on
WER.

B. Comparison with the State-of-the-art

The StiRes3D also surpasses the previous state-of-the-art
[3] which adopts a CNN with 3D layers to extract the visual
features and a sequence-to-sequence transformer on LRS2-
BBC by a WER reduction of 1.5%. Moreover, the CNN
used in our approach which is StiRes3D is 0.78x smaller
than the CNN used in [3] which is ResNet with some 3D
layers. Another advantage of our proposed approach is that the
StiRes3D CNN can fit different application cases by adjusting
the parameter ω from 2 to 0.5 which will be further discussed
later.

C. Analysis on the Sti3D

To further illustrate the merits of the proposed StiRes3D
convolutional block, we did some more experiments to verify
the effectiveness. First we compare the performance between
standard Sti3D and the StiRes3D, as shown in Table IV.
We keep the value of ω = 2 in both architectures. It is
observed that the residual shortcut will add little burden to

TABLE III
COMPARISON BETWEEN ALL3D AND STIRES3D

Network Training Loss Validation Loss
All3D 3.064 3.695
StiRes3D 3.238 3.594
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TABLE IV
COMPARISON BETWEEN STI3D AND STIRES3D

Network name WER Memory(MB) FLOPs (∗108)
Sti3D(ω = 2) 48.3% 39.69 2.0117
StiRes3D(ω = 2) 46.8% 44.48 2.2286

Fig. 3. Performance of StiRes3D with different ω.

the network, specifically 4.79MB and 0.2169× 108 for space
and computation, respectively. However, it can prominently
improve the performance on WER by 1.5%.

The complexity and performance of StiRes3D can be con-
trolled by the parameter ω which makes the network flexible
to adapt to different application environments. We change the
ω of StiRes3D from 2 to 0.5 and compare the performance.
In Figure 3. It is clear that we can get better recognition
performance by increasing ω, and get smaller networks by
decreasing ω.

IV. CONCLUSIONS

In this paper, we introduce a novel HMM pipeline and a
new compact 3D convolutional block, Stingy Residual 3D
Convolution, and show that our pipeline performs well on lip-
reading task. We also verify that adding 3D convolutions to
the visual module effectively benefit the performance of the
model. Then we use different CNNs on lip-reading tasks to
show that our StiRes3D improves the performance with less
parameters and FLOPs, meanwhile it is more flexible to adapt
to different applications.
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