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Abstract—Real-world surveillance face images are usually of
low-resolution (LR) because the faces are captured at a distance.
Matching the LR query faces with high-resolution (HR) gallery
faces is still challenging and remains an open problem. The
existing face recognition networks fail to extract discriminative
features from the LR face images as they never encounter any
LR face images during training. One intuitive way to solve the
problem is to randomly downsample the training face images to
different resolutions for training. This implicitly makes the face
recognition network invariant to the resolution change. To better
address this problem, we propose to train a face recognition
network using a deep Siamese network, which is simple yet
effective. Firstly, a shared classifier is used to classify the deep
features extracted from HR and LR facial image pairs, explicitly
narrowing the domain gap between the HR and LR deep features.
Secondly, on top of the deep Siamese network, a new loss
function, namely the cross-resolution triplet loss, is used to pull
the matching pairs further while pushing the non-matching pairs
in the learned feature space. Therefore, the trained network
can extract discriminative features across different resolutions.
Experiments demonstrate the superiority of our proposed method
on a synthetic LR face dataset, LFW, and two real-world LR face
datasets, SCface and QMUL-SurvFace.

I. INTRODUCTION

Face recognition (FR) is a well-studied topic. Because
of the development of deep learning and the availability of
large-scale labeled face datasets [1], [2], [3], [4] and the
novel loss functions [5], [6], [7], [8], [9], the state-of-the-art
face recognition models have made tremendous improvements
on public benchmarks, achieving accuracies of over 99% on
LFW [10]. However, those face images used for training
and evaluating deep FR models are high-resolution (HR),
high-quality web-based face images. The off-the-shelf deep
FR models suffer from noticeable performance degradation
when applied to real-world face images, e.g., surveillance
face images. This is due to the domain discrepancy between
the source domain, i.e., those web face images used to train
the models and the target domain, i.e., those surveillance
face images. Compared to the web face images, real-world
face images are contaminated by complex nuisance factors,
such as sensor noise, motion blur, bad illumination, etc.
Moreover, the real-world surveillance face images are usually
of low-resolution (LR) because the faces are captured at a
distance. Matching LR query images with a HR gallery set,
or ever with a LR gallery set, is known as low-resolution
face recognition (LRFR). Due to the increasing popularity of

surveillance systems, LRFR in the wild has a wide range of
applications and is an urgent issue.

The approaches proposed for LRFR can be generally
divided into two categories. One is to use super-resolution
(SR) techniques to reconstruct the HR faces from LR query
faces by enhancing the image resolution and quality. Then,
the reconstructed faces are used for recognition. Face SR was
first proposed in [11], which employs Bayesian formulation to
estimate the gradient prior from the Gaussian and Laplacian
pyramids of the HR training images to reconstruct faces.
Another early work [12] uses Principal Component Analysis
(PCA) to reconstruct LR faces by the weighted sum of the
face images in the training set. Recent work [13] employs
Generative Adversarial Networks (GANs) [14] to perform face
SR so that it can generate visually appealing super-resolved
images for very low-resolution face images. However, these
methods are vision-oriented and are not optimized for
recognition purposes. Alternatively, identity-preserved face SR
should be considered. [15] proposed a framework based on
singular value decomposition (SVD) to perform face SR and
recognition simultaneously. In [16], [17], [18], different kinds
of identity-preserved loss are combined with the pixel-wise
loss to perform face SR while preserving the identities of
the LR face images so that the super-resolved face images
are beneficial for recognition. However, these methods are not
feasible for real-world LR face images as they require paired
LR and HR images for training, where the LR and HR images
have pixel-to-pixel correspondence, which is unavailable for
real-world LR face images.

The other category is to project the features of LR faces
and their HR counterparts into a common subspace, where the
feature distance in the common subspace is minimized. Li et
al. [19] proposed a method based on coupled mappings, which
projects face images of the same person at different resolutions
into a unified feature space, where the difference between the
LR and HR features is minimized. Lu et al. [20] extended
it into a deep learning framework. They proposed a deep
coupled ResNet (DCR), whose trunk network is trained by face
images of different resolutions, and branch networks are used
to transform HR and LR features into a resolution-specific
common subspace. In [21], a Resolution-Invariant Deep
Network is proposed to learn resolution-invariant features,
which can preserve the discriminative information among
the face images of different resolutions. Yang et al. [22]
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Figure 1. The overview of the proposed deep Siamese network structure. A 4-way face recognition network is used to extract the deep features of face
images of sizes 128× 128, 16× 16, 12× 12 and 8× 8 pixels. The face recognition networks share the same classifier.

employed a discriminative multidimensional scaling (MDS)
method to learn a mapping matrix, which projects LR and
HR features into a common subspace. Recently, Zha et al.
[23] proposed an online triplet selection method to address the
resolution-mismatch problem, which uses a transferrable triple
loss to pull the cross-resolution matching pairs and push the
non-matching pairs. In general, the subspace-based methods
achieve better recognition rates than the SR-based methods
because they consider feature extraction and recognition in a
unified way.

In this paper, we propose a deep Siamese network to
address the LRFR problem. During training, a face recognition
network is used to extract the deep features from face
images of the same person across different resolutions, and
a shared classifier is used to classify the deep features.
This can explicitly narrow the domain gap between the
LR and HR face images. By using the classification loss
Lcls, it will minimize intra-class variations while maximizing
the inter-class variations across face images of different
resolutions. Additionally, a cross-resolution triplet loss Ltriplet

is proposed to effectively pull the matching pairs and push the
non-matching pairs across different resolutions. The details of
the proposed methods will be presented in the next section.
Experiment results show that our proposed method achieves
state-of-the-art performance on the LFW [10], SCface [24],
and QMUL-SurvFace [25] benchmarks.

II. PROPOSED METHOD

To learn discriminative features across different resolutions,
the proposed method adopts a deep Siamese network, as shown
in Figure 1. It is composed of a K-way face recognition
network G for extracting the deep features from HR face
images and their LR counterparts. The HR and LR deep
features are then fed to a shared classifier, where the additive

margin softmax loss (AM-softmax) [7], [8] is employed to
obtain the classification loss Lcls. Moreover, to further reduce
the domain gap between the HR and LR deep features across
different resolutions, we propose to train the network with
a new loss function, namely the cross-resolution triplet loss
Ltrsiplet. The details of the loss functions will be discussed
in Section II-B.

A. Network architecture

The face recognition network is a convolutional neural
network for learning the deep representations. In our
experiments, we use the ResNet architecture adopted from
[6], which is shown in Figure 2. It consists of 20 convolutional
layers. The kernel size used in the convolutional layer is 3×3,
with stride 1 (s1). Downsampling is performed by the 3 × 3
convolutional layers with stride 2 (s2). Each convolutional
layer is followed by the PReLU nonlinear unit [26]. F denotes
a fully connected layer. The number of feature maps is
indicated on top of each layer, and ×n means a residual
connection that repeats n times. This network only accepts
images of 128× 128 pixels, so all the face images fed to the
network are resized to 128× 128 pixels.

B. Loss functions

Mathematically, given a set of training face images X ={
x
(0)
i ,x

(1)
i , · · · ,x(K−1)

i , yi

}N

i=1
, where x

(0)
i is the i-th HR

face image of size 128×128 pixels, x(1)
i , · · · ,x(K−1)

i are the
LR face images of the same subject, yi is the class label of the
i-th subject, and N is the mini-batch size. In our experiment,
due to the limitation of the GPU memory, we set K = 4. This
means that one HR branch and three LR branches are used
such that x

(0)
i ,x

(1)
i ,x

(2)
i ,x

(3)
i represent the training faces of

the i-th subject of resolution 128× 128, 16× 16, 12× 12 and
8×8 pixels, respectively. The deep features f

(k)
i are obtained

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1445



Figure 2. The network architecture of the face recognition network.

by feeding the face images to the face recognition network,
such that f (k)

i = G(x
(k)
i ), where k = 0, 1, 2, 3.

To effectively train the face recognition network,
cosine-based softmax losses have been widely used as
the loss function for the classifier. Here, we consider the
additive margin softmax loss (AM-softmax) [7], [8], as the
loss function of our classifier, which is shown as follows:

LAMS(fi) = − 1

N

N∑
i=1

log
es(w

T
yi

f i−m)

es(w
T
yi

f i−m) +
∑C

j=1,j 6=yi
esw

T
j f i

(1)
where wj is the j-th class center vector, C is the total
number of classes, and both wj and f i are `2-normalized. s
is the scaling factor and m is the margin penalty. The overall
classification loss Lcls is the average of the AM-softmax loss
of the HR and LR features, as follows:

Lcls =
1

K

K∑
k=1

LAMS(f
(k)
i ) (2)

We empirically found that LAMS(f
(0)
i ) < LAMS(f

(1)
i ) <

LAMS(f
(2)
i ) < LAMS(f

(3)
i ). This reflects that the deep

feature becomes more discriminative when the resolution is
increasing, and there is a domain gap between the HR and
LR deep features. To further reduce the domain gap and make
the LR deep features more discriminative, we propose the
cross-resolution triplet loss Ltriplet, so that the deep features
of different resolutions can be matched during training. This
loss function is shown as follows:

Ltriplet =
1

NK
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where d(·) is the cosine distance, which is expressed as
follows:

d
(
f
(k)
i ,f

(l)
j

)
= 1− (f
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(l)
j (6)

where both f
(k)
i and f

(l)
j are `2-normalized. Therefore,

p
(k)
i are the farthest matching pairs and n

(k)
i are the

closest non-matching pairs within a mini-batch. Using the

cross-resolution triplet loss Ltriplet, we can pull the farthest
matching pairs while pushing the closest non-matching pairs
across different resolutions. The overall loss function L is the
sum of these two losses, as follows:

L = Lcls + λLtriplet (7)

where λ is used to balance two losses. We empirically set it
to 1.

III. EXPERIMENTS

The VGGFace2 [4] dataset is used as the training set to
train the proposed deep Siamese network. It contains about
3.31M images from 9,131 subjects. All the face images are
cropped and aligned based on 5 facial landmarks detected by
MTCNN [27]. The scaling factor s and margin penalty m of
the classification loss Lcls are set to 30 and 0.35, respectively.
During training, a HR face of 128×128 pixels is downsampled
to 16 × 16, 12 × 12, 8 × 8 pixels, and then upsampled to
128 × 128 pixels to form the LR inputs. The bilinear kernel
is used as the upsampling and downsampling operator. The
aligned face images are normalized to [−1, 1], and they are
augmented by flipping horizontally with a 50% probability.

The face recognition network and the classifier are trained
from scratch. Stochastic gradient descent (SGD) optimizer
is used with the weight decay parameter of 5 × 10−4 and
momentum of 0.9. N is 128 (i.e., 512 images from 128
subjects in a mini-batch). The learning rate is initialized at 0.1,
and it is divided by 10 at 40K, 60K, 80K iterations. Training
is finished at 100K iterations. We train the models with the
PyTorch [28] library using two GTX 1080TI GPUs. During
inference, a single face recognition network is used to extract
the deep features of the face images. Cosine similarity is used
to measure the similarity of two deep features.

For a fair comparison, we use the same 20-layer ResNet to
construct a baseline model, where a 1-way face recognition
network is used. Therefore, only the classification loss is
used as the loss function, which is the AM-softmax loss. The
training face images are randomly downsampled between 8×8
and 128×128 pixels and then upsampled to 128×128 pixels.
The rest of the training pipeline is the same as our proposed
deep Siamese network. For comparison, we also trained a
model, denoted as Ours (w/o Ltriplet), which does not use
the cross-resolution triplet loss Ltriplet in training, i.e.λ is set
to 0.
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Figure 3. Examples of SCface. It consists of a HR mugshot and LR images taken from 3 distances by 5 cameras.

A. Experiments on LFW

The LFW [10] dataset contains 13,233 images from 5,749
subjects. The face images were captured in uncontrolled
environments with variations, such as pose, illumination, and
the aging of persons. We follow the unrestricted protocol
to report the mean accuracy of 10-fold cross-validation on
6,000 face pairs, where half of the matches are positive
while the other half are negative. Same as in [20], [23], we
take the first one as HR (128 × 128 pixels) gallery and the
second one as LR query. The query image is synthetically
downsampled to 8× 8, 12× 12, 16× 16 and 20× 20 pixels,
and then upsampled to 128 × 128 pixels. The face images
are cropped and aligned based on 5 facial landmarks, same
as the training pipeline. We compare our proposed method
to our baseline models, Sun et al. [29], TCN [23], and DCR
[20]. The experiment results are shown in Table I. We also
tabulate the face-verification results on HR query images
(128 × 128 or 112 × 96 pixels) as reference. The results
demonstrate the effectiveness of the deep Siamese network,
as the Ours (w/o Ltriplet) model is a strong baseline. Our
proposed method achieves an increase in accuracy by 1.63%
on average, compared to our baseline model, and achieves an
increase in accuracy by 0.45% on average, compared to the
Ours (w/o Ltriplet) model. Furthermore, our proposed method
outperforms the best state-of-the-art method, DCR, by 1.48%
on average. This illustrates the power of the combination of
the deep Siamese network and the cross-resolution triplet loss.

Moreover, we conducted an additional experiment on the
LFW benchmark, where the gallery face images and the
query face images are downsampled to the same size. This
demonstrates a LR-to-LR face recognition problem, which is
more challenging. The experiment results are shown in Table
II. We can see that our proposed method outperforms the
baseline models.

B. Experiments on SCface

The SCface [24] is a real-world surveillance dataset,
which contains face images from 130 subjects captured by
surveillance cameras at different distances under uncontrolled

Table I
VERIFICATION RATES (%) OF DIFFERENT METHODS BASED ON LFW

6,000 PAIRS, FOLLOWING THE LFW UNRESTRICTED SETTING.

Query size→ 8× 8 12× 12 16× 16 20× 20
128×128
(112×96)

Sun et al. [29] 90.0 94.9 97.2 98.2 (99.1)
DCR [20] 93.6 95.3 96.6 97.3 (98.7)
TCN [23] 90.5 94.7 97.2 97.8 (98.8)
Baseline 90.8 95.4 97.5 98.5 99.4

Ours (w/o Ltriplet) 94.3 96.9 97.9 97.8 98.9
Ours 94.8 97.6 98.2 98.1 99.1

Table II
VERIFICATION RATES (%) OF DIFFERENT METHODS BASED ON LFW

6,000 PAIRS, FOLLOWING THE LFW UNRESTRICTED SETTING. GALLERY
SET AND QUERY SET ARE OF THE SAME RESOLUTION.

Size→ 8× 8 12× 12 16× 16 20× 20
Baseline 86.9 93.5 95.7 97.5

Ours (w/o Ltriplet) 90.3 95.4 97.0 97.1
Ours 90.8 95.9 97.4 97.5

indoor environments as shown in Figure 3. Same as [22], we
consider the daytime data only. For each subject, a digital
camera capture a HR mugshot image, and five surveillance
cameras capture 15 LR images with with various quality at 3
distances, i.e., 5 images at each of the distances: 4.20m (d1),
2.60m(d2), and 1.00m(d3). Following [22], the HR mugshot
images are considered as gallery images, while all the LR
images, captured at d1, d2, and d3, are considered as query
images. All the images are cropped and aligned based on 5
facial landmarks. Additionally, same as [22], we fine-tune our
models by randomly selecting face images from 50 subjects,
while the remaining 80 subjects are used for testing. Thus,
there is no identity overlap between the training set and the
test set. The fine-tuned models are denoted with ‘-FT’. We also
provide the results of the models without fine-tuning, where
all the 130 subjects are used for testing. During fine-tuning,
the scaling factor s is set at 5 as the number of classes
decreases to 50, and the learning rate is set at 1 × 10−5.
Fine-tuning is finished after 10,000 iterations. For our baseline
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Figure 4. Examples of QMUL-SurvFace.

Table III
RECOGNITION RATE (%) OF DIFFERENT METHODS AT 3 DISTANCES ON
THE SCFACE BENCHMARK. ‘-FT’ MEANS PERFORMING FINE-TUNING

WITH THE SCFACE TRAINING SET.

Distance→ d1 d2 d3 avg.
MDS [30], [31] 60.3 66.0 69.5 65.3

DMDS [22] 61.5 67.2 62.9 63.9
LDMDS [22] 62.7 70.7 65.5 66.3
RICNN [21] 23.0 66.0 74.0 54.3

FAN [32] 62.0 90.0 94.8 82.3
Baseline 76.3 98.6 99.4 91.4

Ours (w/o Ltriplet) 77.8 96.9 98.5 91.1
Ours 79.7 95.7 98.2 91.2

Sun et al.-FT[29] 65.6 87.2 98.7 83.8
DCR-FT [20] 73.3 93.5 98.0 88.3
TCN-FT [23] 74.6 94.9 98.6 89.4
FAN-FT [32] 77.5 95.0 98.3 90.3

Khali et al.-FT [33] 88.3 98.3 98.6 95.0
Baseline-FT 82.5 98.0 99.5 93.3

Ours (w/o Ltriplet)-FT 86.0 97.0 98.0 93.7
Ours-FT 93.0 98.5 98.5 96.7

model, the input faces are randomly selected from the HR
mugshot and the LR surveillance images. For the Ours (w/o
Ltriplet)-FT and Ours-FT models, x

(0)
i is the HR mugshot,

while x
(1)
i ,x

(2)
i ,x

(3)
i are the LR surveillance images randomly

selected at d1, d2, and d3, respectively, of the i-th subject.
We compare our results with MDS [30], [31], DMDS [22],
LDMDS [22], RICNN [21], Sun et al. [29], DCR [20], and
TCN [23]. We also compare them with a face SR-based
method FAN [32], and a recently proposed distillation-based
method [33].

The face recognition rates are tabulated in Table III. From
the results, first, we can see that the Ours (w/o Ltriplet) model
is a relatively strong baseline, as it outperforms most other
methods, even without performing fine-tuning. This illustrates
the effectiveness of the deep Siamese network. With the
cross-resolution triplet loss, the performance can be further
improved. After fine-tuning, our proposed method outperforms
the state-of-the-art methods.

C. Experiments on QMUL-SurvFace

QMUL-SurvFace [25] is a challenging real-world
surveillance dataset, as the gallery and query face images are

Table IV
VERIFICATION RATES (%) OF DIFFERENT METHODS ON

QMUL-SURVFACE BENCHMARK.

Method TAR(%)@FAR AUC30% 10% 1% 0.1%
FAN [32] 71.30 44.59 12.94 2.75 76.94
Baseline 66.13 37.76 11.64 3.53 74.17

Ours (w/o Ltriplet) 68.23 42.86 14.44 6.28 75.71
Ours 75.09 52.74 21.41 11.02 80.03

barely visible as shown in Figure 4. It contains 463,507 face
images from 15,573 unique identities captured from real-world
surveillance videos. We consider the face verification protocol,
which contains 10,638 pairs, with half of the matches being
positive, and the other half being negative. We compare
our method with the state-of-the-art method FAN [32], on
the database. As shown in Table IV, our proposed method
achieves better True Accept Rates (TARs) at different False
Accept Rates (FARs), and also larger Area Under the
ROC Curve (AUC). Compared to the Ours (w/o Ltriplet)
model, our proposed method improves the performance by
a large margin. This can illustrate the effectiveness of the
cross-resolution triplet loss, which reduces the domain gap
across different resolutions.

IV. CONCLUSIONS

In this paper, we propose a deep Siamese network to
address the low-resolution face recognition (LRFR) problem.
Our method uses the Siamese network to extract deep features
from face images across different resolutions, and a shared
classifier is used to make the deep features of different
resolutions compare with the same class center vectors.
Additionally, we have proposed a cross-resolution triplet loss
to further narrow the domain gap between deep features across
different resolutions, which can pull the farthest matching
pairs closer and push the closest non-matching pairs farther
away. Experiments on the LFW, SCface, and QMUL-SurvFace
databases have demonstrated the superiority of our proposed
LRFR method, which achieves better performance than the
state-of-the-art methods.
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