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Abstract—Rendering real photos to abstract sketches is an
interesting application that can help us understand the key
features. In this paper, we propose a universal photo sketch
model via a deep convolutional neural network. Prior arts often
cast this problem as an edge or contour detection. However, the
edges or contours may not exactly reflect the boundaries of the
contents of the photos. They also fail to reveal the occlusion
that separates the objects from each other. We resolve this
problem by proposing Photo2Sketch and Sketch2Photo to form
a loop to bridge the gap between photos and sketches. We
introduce relevant sketch references as indicators to supervise
the sketch generation. Meanwhile, we also introduce an adaptive
sketching process that can generate drawing with confidence,
hence multiple sketches can be obtained. Experimental results
show that our proposed method surpasses other state-of-the-art
methods in both qualitative and quantitative measures.

I. Introduction

In computer vision or computer graphics, edge-like visual-
ization is one of the interesting tools in image representation.
It can be edges, textures, contours, boundaries, and so on.
Using edge-like visualization can reduce the data redundancy
in image processing. Automatic edge-like generation can be
useful for geometric understanding [7], object recognition [9],
fashion design [14] and other applications. Sketch, in a general
definition, is one type of edge representation of the image.
Yet it is not just edges but connects related edges to form
continuum boundaries for objects. It is not even just contours
but preserves more detailed features to reveal the occlusion
of objects. It differs from semantic segmentation, sketches
can describe more detailed textures. Perceptually, it resembles
how human observe the world. For art design, a sketch is an
important artistic language that can reflect the rationality of
visual perception and aesthetic appreciation.

However, many related works approximate sketch as edge-
like visualization [3]-[19]. For example, [4] gives an edge
detection model that extracts multiscale holistic feature repre-
sentation to find edges that are close to the object boundaries.
[6] forms a new dataset with paired photos and sketches and
uses it to train a deep network for sketch generation. Despite
the existing sketch datasets, it still cannot cover the large
variety of different images with different contents. [15] instead,
proposes a deep model that works as a domain transfer. As
an unsupervised approach, it can mimic the appearance of
the prediction close to the sketch references. However, it only
works well on specific images and loses a lot of details when

a. Photo b. Human annotation c. Canny edges d. Boundary [9]
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Fig. 1: Comparison among different edge-like generation. We
use one image from BSD500 [27] and compute it using different
edge/contour detectors. Our result shows superior visual quality
compared to others in details.

it is applied to image with new contents.
In order to make attractive sketch generation, we propose in

this paper Photo2Sketch by means of projection from photos
to sketches. Having consulted experts on art painting, we
define our objectives, which differ from previous studies, in
the following: 1) the sketch results should contain edges and
contours that can separate objects from each other and reveal
the occlusion relationship, 2) the sketch results should also
preserve the depth information and complex textures by the
density of the drawings, and 3) the sketch results should have
some drawing uncertainty reflected by the color of the drawing
lines. These objectives ensure that our generated sketch image
can be perceptually close to the human sketch.

As shown in Figure 1, we compare with the results of 1)
simple edge detection using canny detector (Figure 1c), 2)
Boundary detection (Figure 1d), 3) free doodle (Figure 1e),
4) Holistic edge detection (Figure 1f) and 5) contour and
edge detection (Figure 1g). It can be found that our result
outperforms others in visual details. For instance, our result
can keep the windows of the building and the shadow in
the water. We use Figure 2 to demonstrate the desired sketch
image that we target. By using our proposed method, the facial
details are preserved and the style looks like human drawing.
To summarize, our key contributions include:

• We implicitly discover mapping correlation between pho-
tos and sketches by forming a loop to achieve self
supervision. That is, we use Photo2Sketch to map photos
to corresponding sketches and use Sketch2Photo to map
sketches back to photos.

• To generate photo-realistic sketches, we introduce ref-
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Fig. 2: Example of using our Photo2Sketch for sketch..

erence based training losses to encourage the generated
sketches close to general sketches.

• Furthermore, we introduce the soft weighted function to
adaptively generate the sketch results so that we can
assign confidences to different drawing lines. Hence,
multiple sketch candidates can be generated.

II. Related Work

In this section, we will give a detailed introduction to the
previous works, including 1) edge based image generation and
2) Doodle based image generation.

A. Edge based image generation

We further categorize edge based image generation into
three groups: 1) edge detection, 2) contour detection, 3)
category-aware edge detection and 4) thinning and skeleton
detection.

Edge detection traditionally use first-order or higher-order
filters to find horizontal and vertical edges [1-2]. However,
these traditional approaches are sensitive to noise and sudden
intensity changes within the local regions. The generated
edges are redundant and noisy. Holistic edge detection [4]
is proposed by using a deep neural network to extract rich
feature representation to find the critical edges and boundaries
that can reflect the 3D geometry. Similar techniques are further
developed in [3]-[5]. For example, [3] makes use of multiple
edge detectors to form soft labels to supervise the coarse-
to-fine training process. [5] further refines edge detection as
close as possible to the ground truth with subpixel convolution.
Along with many proposed edge detection approaches, there
are some labeled datasets with paired photos and edge maps,

like BSD500 [27] and NYUDv2 [7], which can be used for
model training and evaluation.

For contour detection, it serves as the basic computer vision
task such as image segmentation. The idea is to classify
pixels into different classes and then find the boundaries that
partition objects. [8] classifies the contours into sub-classes
of positive and negative samples. It then uses the positive-
sharing loss function to regularize the model training. [9]
proposes a fully convolutional encoder-decoder network to
extract multi-scale features for contour detection. To gener-
ate more contour samples, [10] proposes a technique that
generates weakly supervised annotations with more accurate
boundaries. Category-aware edge detection is a more specific
contour detection task that objects with the same classes
should be assigned with the same contours. It is a dual task to
semantic image segmentation which identifies object regions.
For example, [11] proposes a semantic boundary thinning
layer to reduce boundary ambiguity. It also uses an active
alignment scheme to iteratively refine the ground-truth labels
by prediction. To localize the contours for smaller objects, [12]
enhances the contours detection using their proposed dynamic
feature fusion.

For thinning or skeleton detection, it is complementary
to contour and edge detection. It is widely used in shape-
based object matching and recognition. The idea is to find the
symmetric axis that can represent the structure, presence and
size of the objects. In the early works, [37-39] proposed mor-
phological image transforms to achieve fast thinning detection.
More recent studies [40-43] show that using deep learning
approaches can achieve good performance both in running
time and detection accuracy.

B. Doodle based image generation
Doodle based image generation is an active research topic.

It is close to edge-based image generation to extract edges
from the photos. The difference is that it extracts more abstract
and simple edges to mimic kids’ drawing. For example, [13]
proposes a recurrent neural network (RNN) able to generate
simple drawings from images. However, it cannot process
images with complex objects. [14] proposes a deep generative
model for generating high-quality multiclass sketches via con-
ditional coding, hence it can generate the desired sketches. To
learn non-local properties, [15] proposes a transformer based
sketcher which learns the optimal stroke sequencing strate-
gies that generate the most recognizable and distinguishable
strokes. DoodlerGAN [16] was proposed to achieve interactive
drawing. The idea is to use a part-based Generative Adversarial
Network (GAN) to fill out missing parts of the object. Another
popular topic is face based doodle generation. It focuses solely
on facial images to preserve facial features. [17] proposes a
cycleGAN structure to form a close loop between unpaired
photos and sketches to learn the mapping functions. [18] uses
robotic arms to draw stylized avatar to form unpaired faces and
avatar images to train a GAN network for doodle generation.
[19] proposes a pencil stroke imitation mechanism that can
guide stroke drawing by a novel edge tangent flow field.
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Fig. 3: The training architecture of the proposed method. It
contains three sub-networks, Photo2Sketch, Sketch2Photo and dis-
criminator. The Photo2Sketch and Sketch2Photo are both built on
the same encoder-decoder structure. The Encoder and decoder are
symmetric to each other to down- and up-sample feature maps 8×.
The Discriminator is a simple 2D CNN structure that down-sample
the feature maps 8 × to output a probability map. During the testing,
we only keep the Photo2Sketch for sketch generation.

Further Highlights To distinguish our proposed method
from other existing edge based or doodle based image gen-
eration, let us summarize the differences in the following
points: 1) we propose a sketch generator that can transfer
photos to sketch-like images with edges and detailed textures,
rather than simple edges or contours [8]-[12], 2) our proposed
Photo2Sketch can preserve the 3D geometry to reveal the
original contents rather than abstract doodle [13]-[19], and 3)
rather than focusing on images with specific classes [17]-[19],
the proposed method is general for photos with any contents.

III. Method
In this section, we give a detailed introduction to our

proposed Photo2Sketch and Sketch2Photo. It has two major
advantages: First, it can learn the forward mapping function
to cast photos to sketches, and it can also learn the backward
mapping function to project sketches to photos. Second, it can
generate sketches with different confidence so we can obtain
multiple sketches with different details.

Overview. Given an input image X and a style (refer-
ence) image R, the goal of our proposed Photo2Sketch is
to find the mapping model 6 : X|R → Y to map the
input photo to a sketch prediction with the style transferred
from the style image. Thus, we can obtain the sketch pre-
diction Y with contents close to X and style close to R.
Photo2Sketch is a feed-forward network that transfers arbitrary
photos efficiently (∼100 fps, Figure 3). It consists of three
sub-networks: Photo2Sketch, Sketch2Photo and discriminator.
The Photo2Sketch and Sketch2Photo are both built on the
same encoder-decoder structure. The Encoder and decoder
are symmetric to each other to down- and up-sample feature
maps 8×. At the bottleneck of the encoder, we have one
Multi-Head Attention (MHA) that learns the global feature
correlations. For the last layer of the decoder of Photo2Sketch,
we propose a soft weighted layer to learn the sketch image.
The Discriminator is a simple 2D CNN structure that down-
samples the feature maps 8 × to output a probability map. Let
us introduce them in details.
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Fig. 4: The structure of Multi-Head Attention. We show the
computation of MHA that split input features into n heads and
compute self-attention in parallel, then it groups heads together and
add the input feature to the final output.

A. Photo2Sketch

The Photo2Sketch and Sketch2Photo are identical to each
other with different functions. They are built upon a symmetric
encoder-decoder structure. The encoder is to learn compact
feature representation and the decoder is to cast the learned
features to the target domain, that is, to produce sketches for
Photo2Sketch and to form photos for Sketch2Photo. The en-
coder is made of 4 layers of 2D convolution layers (blues boxes
in Figure 3) and one Multi-Head Attention (MHA) block. The
use of MHA block is inspired by recent studies on non-local
processing in deep learning [20]-[22]. The advantage is that it
can learn global feature correlations to better grasp the image
information. It also fits our target to sketch generation. Using
MHA can extract the global geometric information of the input
photo so it can preserve the 3D geometry for reconstruction.
Note that the structure of MHA follows the design of [21]
to efficiently extract global attention. In Figure 4, we show
the structure of the MHA block. It splits the input feature
�8= into n heads, and each head has a feature map of size
64 × � × , . Each head computes its self-attention, and all
heads are regrouped together and added with the input feature
to form the output feature �>DC .

For the Decoder, we make use of four layers of residual
blocks to gradually upsample the feature maps back to the
same dimension as the input photo. Recall that our target is to
generate a black-white sketch to reflect the human drawing so
it is natural to output a grayscale image for reconstruction [3]-
[6]. Instead, we propose to use a soft weighted structure (the
red box in Figure 3) to construct the sketch image. The idea
is that we can consider the sketch generation as a combination
of multiple sketch predictions that are weighted by confident
scores. Hence, the soft weighted function can be written as,

H8, 9 =

)∑
C=0

4
HC
8, 9∑)

C=0 4
HC
8, 9

· HC8, 9 (1)
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Fig. 5: The training losses of the proposed method. To train the
proposed network, we use 6 loss terms, including Edge loss (edge
map predicted sketch), content loss (predicted sketch and photo),
style loss and adversarial loss (sketch reference predicted sketch), L1
loss (photo and predicted photo) and feature loss (encoder features
from Photo2Sketch and Sketch2Photo).

where T is the number of candidates (also can be seen from
the red box in Figure 3), H8, 9 is the i,j-th predicted pixel on
the final sketch image and HC

8, 9
is the i,j-th feature value of

the t-th predicted sketch image. This soft weighted function
is differentiable so it can be trained end-to-end. There are T
different sketch results that are weighted together to obtain the
final sketch image. To adaptively generate multiple sketches,
we can randomly select the t-th sketch image.

B. Sketch2Photo
The use of Sketch2Photo is to learn the inverse map-

ping function from sketches to photos. The structure of
Sketch2Photo is as same as Photo2Sketch. It resonates with the
studies on CycleGAN [23]. The reason for using Sketch2Photo
is to achieve self-supervision. Since we do not have paired
photo-sketch dataset, we can learn one more step to map the
predicted sketch back to the original photo. Note that we do
not care about the color distribution so we only design the
Sketch2Photo to generate grayscale photos.

C. Discriminator
The discriminator is built using 4 layers of 2D convolution

followed by a MHA block. It is used to output a probability
map to classify the predicted sketch from the reference. The
objective is to encourage the predicted sketch close to the
reference in appearance. We also use a MHA block to grasp
the global information.

D. Training strategy
With the proposed network, we train this network to gen-

erate sketches with 1) accurate edges and contours and 2)
detailed textures. The complete training process is described
in Figure 5

There are 6 different loss functions to guide the sketch
generation. First, we have the edge loss !4364 with l_1 errors

between the predicted sketch Y and edge map E. The Edge
map is obtained by using the canny detector on the input photo.
Note that we use this edge loss to encourage the prediction
close to a sparse edge image. However, we also do not want the
predicted sketch image containing inconsistent edges. Hence,
we can use a pre-trained VGG19 [25] model (gray box in
Figure 5) by keeping all convolutional layers and discarding
the fully connected layers. To measure the style similarity, we
can use VGG-19 to extract feature maps (relu1_2, relu2_2,
relu3_4, relu4_1) for the input photo X and the predicted
sketch Y as +Y and +X. We firstly measure the content loss
as

!cont =
4∑
8=1
‖+ 8

Y −+
8
X‖

1 (2)

It measures the similarity of the sketch and photo at different
feature levels. Its objective is to constrain the geometrical
similarity between the sketch and photo to ensure that the
predicted sketch has consistent contours and edges close to
the photo. Furthermore, we compute the style loss between
the predicted sketch and the sketch reference as,

!style =
4∑
8=1
‖<40=

(
+ 8

Y

)
− <40=

(
+ 8

X

)
‖1 + ‖E0A

(
+ 8

Y

)
− E0A

(
+ 8

X

)
‖1

(3)

where mean(.) and var(.) are the mean and variance of
the feature maps. Hence, this is to measure their mean and
variance to align the sketch features close to the reference
features.

Meanwhile, we have the discriminator to train together with
the Photo2Sketch and Sketch2Photo. We have the adversar-
ial loss !03E to measure the perceptual similarity between
the predicted sketch and the reference image. We have the
Sketch2Photo to reconstruct the photo from the predicted
sketch. We use l_1 errors to measure the pixel loss as
!?8G4; . Since we have identical encoder-decoder structure for
Photo2Sketch and Sketch2Photo, we can also use the feature
loss to further constrain the feature similarity between the
predicted photo X’ and input photo X as,

!feat = ‖,X′ −,X‖1 (4)

where ,X′ and ,X are the features of predicted photo and
input photo from the encoder.

Finally, we have the total loss combining all the losses as,

! =_4364!edge + _2>=C !cont + _BC H;4!style+
_03E!adv + _?8G4;!pixel + _ 5 40C !feat

(5)

where we have _ (.) as the weighting parameters to balance
all the loss terms.
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Fig. 6: Visual comparison among different methods. We use 3 examples from BSD500 and 3 examples from DIV2K for visualization. It
can be seen that our method not only preserves the details on textures, it also generates different colors of lines that reflects the confidence
of drawings.

IV. Experiments
A. Datasets and Settings

To train our network, we used images from MS-COCO
[35] as training data and the images from ImageNet Sketch
[34] as sketch references. At training, we keep the image
ratio and crop a region of 256×256 as training patches. As
data augmentation, we randomly flip images horizontally and
vertically. To obtain the edge map for training data, we use
the Canny detector in OpenCV package1 to extract them. For
the testing data, we consider two different sets of data: 1)
edge based dataset with annotated edge maps and 2) large
dataset with rich contents. For the former, we use BSD500 [6]
dataset to estimate the performance of edge detection. BSD500
contains 500 images with medium resolutions, each image has
one edge map annotated by humans. For the latter, we used
DIV2K [28] dataset to estimate the perceptual quality of sketch
images. DIV2K contains 800 images with 2K resolutions. The
contents vary a lot. This is good, since it can be used to test
the generalization of different approaches.

Implementation details. We trained our network in two
stages: 1) we firstly trained the whole network without using
the discriminator, and 2) then we fixed the Sketch2Photo and
added the discriminator to train the whole network. Each stage
we trained it for 100 epochs. We trained the network using
Adam optimizer with a learning rate of 2 × 10−4 and a batch

1https://opencv.org/

size of 8 for 12 hours on a single NVIDIA RTX2080 GPU
using PyTorch.

B. Evaluation Metric
To evaluate our approach, we consider two criteria: bound-

ary detection and perception similarity. For the former, we
followed the standard protocol used in edge detection [4]-[19]
to match predicted pixels to the ground truth, that is, F1-
score used in [6, 26]. It is used to check the continuity of
the boundaries.

Furthermore, for perception similarity, we assume that a
good sketch image should contain key features that be rec-
ognized by a pre-trained deep feature extractor. We have three
evaluation approaches, including Laplacian loss, LPIPS and
style loss. The Laplacian loss [20] is to check the structural
similarity between prediction and ground truth. It is computed
on the Difference of Gaussian (DoG) to form pyramid edge
maps. We used it to check the edge alignment of the sketch
images. We also used LPIPS [33] to check the deep feature
similarity between prediction and ground truth. The style loss
is computed from the pre-trained VGG16 to measure feature
correlations between prediction and ground truth2. Hence,
we used MTCNN [32] to train a TV comedy show3 for

2Following [33], we use pre-trained AlexNet to extract features to compute
L1 distance between prediction and ground truth. The style loss was computed
using Equation (3)

3We collected two episodes of Friends from Youtube and extract total 10000
frames for testing
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TABLE I: Comparison with state-of-the-art methods. We com-
pare our proposed method to other state-of-the-art methods on
BSD500 testing dataset. Two sets of evaluations were used, including
edge like criterion (F1, Pre and Rec) (the larger the better) and
perception criterion (Lap, LPIPS and style loss) (the smaller the
better)

Method Edge eval. Perception eval.
F1 ↑ Pre ↑ Rec ↑ Lap ↓ LPIPS ↓ style loss ↓

Canny 0.611 0.602 0.620 0.167 0.574 3.004
HED [4] 0.782 0.779 0.785 0.113 0.475 2.887

Pix2pix [6] 0.536 0.625 0.469 0.165 0.571 2.972
PS [6] 0.822 0.879 0.773 0.147 0.552 2.901

RCN [28] 0.819 0.882 0.764 0.102 0.469 2.865
BDCN [29] 0.806 0.821 0.792 0.116 0.472 2.798
LT-VAE [31] 0.602 0.592 0.612 0.201 0.605 2.799

Ours 0.807 0.833 0.783 0.0803 0.465 2.034

face detection. Then we used different approaches to generate
different facial sketches and used them for face detection. A
good sketch model should preserve the facial features that can
be recognized by MTCNN. We evaluated the face detection
by the number of missing detections and correct detections.

C. Overall Comparison

To compare the performance of our proposed method, let
us use several state-of-the-art edge-like detection approaches:
Canny detection (Canny) [1], Holistically-Nested Edge Detec-
tion (HED) [4], Pix2pixe [36], Photo-Skething (PS) [6], Richer
Convolutional Features for Edge Detection (RCN) [28] and Bi-
Directional Cascaded Network (BDCN) [29]. We also include
one style transfer approach for comparison, LT-VAE [31]4. We
have the quantitative results in Table I.

In Table I, we compare different methods on BSD500 testing
dataset with two different sets of evaluations: Edge evaluation
and Perception evaluation. For edge evaluation, we followed
[6, 26] to compute the Precision (Pre), Recall (Rec) and
F1 score (F1)5. The Perception evaluation includes Laplacian
loss (Lap), LPIPS and style loss. Note two observations from
Table I:
1) For edge like evaluation, our method shows comparable
results to other methods. However, note that HED, Pix2pix, PS,
RCN and BDCN are designed specifically for edge detection
and they were trained on dataset with annotated edge maps.
It is obvious that they can achieve good results on F1 score,
Precision and Recall. On the other hand, our method is to train
in an unsupervised manner that no annotated edge maps are
provided.

4We make use of LT-VAE for comparison because style transfer is a popular
technology that can transfer the style appearance to the content image. Based
on the idea of style transfer, we use one sketch reference as the style image
and the testing photo as the content image, then input them to the pre-trained
model to obtain sketch-like images. LT-VAE transfers styles only so it focuses
more on appearance rather than edge generation, which is very different from
our work.

5We use the ground truth edge map and the predicted sketch map
to compute the precision and recall. The F1 score is computed as
2×(Precision×Recall)/(Precision+Recall)

TABLE II: Comparison on Face detection using different meth-
ods. We compare our proposed method to other state-of-the-art
methods on face detection. We measure the performance by counting
the number of miss detection and correct detection, then we compute
the average accuracy.

Method Canny HED [4] PS [6] RCN [28] BDCN [29] LT-VAE [31] Ours
Avg. missing ↓ 3.40 3.51 3.75 3.21 2.89 2.45 1.02
Avg. correct ↑ 0.76 0.43 0.42 0.62 0.67 0.72 1.84
Accuracy ↑ 21.3% 20.4% 19.45% 21.8% 22.2% 26.2% 77.2%

2) For perception evaluation, our method shows superior
performance compared to others, which indicates that our
method preserves more content information. For example,
our results on Laplacian loss (Lap) and LPIPS demonstrate
that our method can align well with the ground truth edge
map, while our result on style loss shows that our method
can generate images close to sketch references in terms of
perceptual quality. We also conducted an ablation study to
test the effect of the loss terms in Equation (5). The results
show that using edge loss encourages the prediction with rich
edges, using content and style losses ensure that the prediction
with similar sketch appearance, and using adversarial loss can
fill or compensate some key features. Using feature loss can
further constrain the prediction close to the input.
In order to further demonstrate the performance of different

methods, we visualize a few examples from BSD500 and
DIV2K datasets in Figure 6. We show three examples from
BSD500 dataset and another three examples from DIV2K
dataset. It can be seen that Canny does not clearly highlight
the contour of the objects which makes the image messy.
Boundary [9] and HED[4], on the other hand, only roughly
depict the boundaries of the objects which do not describe fine
details of the photos. BDCN [29] and RCN [28] can improve
the edge detection with more details but they cannot perform
consistently. For example, they do not show the strides on
all zebras (Figure 6 f). They also cannot distinguish the 3D
correlations in Figure 6 d. It is clear that this photo is a close-
up shot that the key feature is a rooster. BDCN and RCN still
detect the tree behind the rooster which makes the results less
attractive.

D. Perceptual Comparison
Note again that our method is much different from other

edge like approaches since our method focuses more on
automate sketching rather than just detecting the edges. It is
important to keep key features as much as possible. How-
ever, it is rather subjective to measure the goodness of a
sketch. To further demonstrate the superior performance of
our method, we tested different methods on two episodes of
TV shows and used MTCNN [32] to detect faces. A good
sketch generation model should preserve the facial features that
can be recognized by the face detector. We measure the face
detection ability by counting the number of missing detections
and correct detections.
From Table II, we can find that our proposed method

outperforms others by a large margin because our method
can preserve the facial features that can be recognized by the
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Fig. 7: Comparison of face detection using different methods. We
visualize 3 frames from the TV show for face detection. We marked
the detected face in red boxes. It can be seen that using our approach
for sketch generation does not affect much for face detection.

face detector. Let us visualize some face detection results in
Figure 7. It is worth noticing that using MTCNN can still
detect the faces from our sketch results while other methods
fail because they cannot preserve the facial features. The
reason is that other methods only focus on strong edges of
furniture or other objects and overlook the fine facial feature.

E. Multiple sketch generation
As described in Equation (1), our proposed method can gen-

erate C sketch candidates for sampling. All sketch candidates
are weighted to form the final output. The weighting values
are learned by the Softmax function so that the sum of the
weights is equal to 1. In our design, users can randomly select
one of the candidates for evaluation. In our experiments, we
set C=5 so users can generate 5 different sketch results for
preference. We demonstrate different sketch results in Figure 8.
Two samples from DIV2K are used to visualize the sketch
results. It can be found that different sketches reveal different
degrees of details and grayscale distributions.

V. Conclusions
We propose a uniform and robust model to transfer photos

to sketches. There are three major modules in our methods:

1) we form a close loop between photos and sketches so the
model can supervise itself to generate photo-realistic sketch
image, 2) we introduce sketch references to encourage the
model to generate results close to the references, and 3) we
use a soft weighted layer to generate different candidates so
users can have multiple choices. Unlike most existing edge like
approaches, our proposed approach can cast real photos into
sketch-like images while preserving more visual details and
key features. Though our proposed method is trained in an
unsupervised manner, it still outperforms most edge detection
algorithms. Possible future work includes video based sketch
generation and interactive sketch manipulation.
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