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Abstract—It is a well-known fact that virtual reality (VR)
sickness is an obstacle to an immersive VR experience, however,
an objective analysis of the physiological responses for VR
sickness has been insufficient. In this study, our analysis uncovers
how the users’ visual attention varies with the level of VR sickness
and how the level of VR sickness influences the center-bias
tendency. Toward this, we first conduct a large-scale eye-tracking
experiment of 21 inexperienced users while they experience
VR sickness-oriented database VR-SP [15]. Then, we quantify
the tendency of visual behavior according to VR sickness. To
do this, we newly define a visual entropy measurement of
VR visual attention. The experimental results clearly suggest
that the center-bias effect becomes stronger as the degree of
VR sickness increases. In other words, this implies that the
users’ explorativeness in VR content may be restricted by the
VR sickness and this leads to the restraint of the immersive
experience. For a more clear demonstration, we also show the
visual entropy can be used to predict VR sickness with an
accuracy of 80% on the VR-SP database.

I. INTRODUCTION

The virtual reality (VR) industry as a whole is advancing
at a fast pace and also has the potential to have a notable
impact on our society. By extending the freedom of movement
of a rigid body in three-dimensional space, the user expects
an increasingly high quality of experience (QoE) from VR
services. Therefore, an unexpected experience through a head-
mounted display (HMD) may induce a deleterious physiologi-
cal side-effect, i.e., VR sickness, which prevents the promotion
of related industrial development [19].

In early studies, the physiological mechanism of motion
sickness which is the higher concept to explain VR sickness
has been analyzed from a neuro-science field [13]. Reason et
al. postulated that motion sickness was caused by internal-
and intra-sensory conflicts between visual, vestibular, and so-
matosensory [18]. Bles et al. clarified this theory by employing
a vector sum of gravity and inertial acceleration by modeling
the sensed vertical [1]. Bos et al. expanded the above theory
to a dynamic model with a mathematical description [2].
However, the theories are only shown analytically, and VR-
oriented experimental analysis has been still insufficient yet.

More recently, deep-learning techniques have been success-
fully applied to estimate human perceptual QoE [11], [14],
[16]. Inspired by this, Padmanaban et al. [17] proposed a first
machine-learning approach to predict VR sickness. Since a
motion component is assertive to VR sickness, several motion-
estimation methods have been used to predict the subjective

Fig. 1: Examples of eye-tracker results according to their VR
sickness levels. (a) is low sickness example and (b) is a high
sickness example of the “AirFighter” scene in the VR-SP
database.

VR sickness. Kim et al. [8] developed a sickness prediction
model to generate an exceptional motion map that is defined
as a difference between image input and reconstructed output.
Kim et al. [12] designed a novel architecture that imitates and
learns the neurological mechanism of motion sickness.

As the previous studies emphasized [8], [12], [17], it is a
well-known fact that visual information occupies superiority
among various sensory information in a VR environment. The
user tends to comprehend the graphic domain surrounding
the user itself through the visual information and predicts the
expected movement for external environment changes. In this
respect, the visual attention on each VR content should be
regarded as one of the most objective ways to reflect VR
sickness. Fig. 1 shows the representative tendency of visual
attention according to VR sickness. Figs. 1 (a) and (b) are the
two different VR contents overlaid with their visual attention
map, i.e., (b) has higher VR sickness score than (a). Through
the figure, we found that the users’ visual attention tends to
become strongly center-biased as the VR sickness intensifies.
Conversely, when VR sickness is slight, users’ explorativeness
is much larger. This inspires us that the degree of VR sickness
can be predicted by quantifying the distribution of visual
attention.

In this study, we perform a comprehensive analysis of the
users’ visual attention in the VR environment according to the
degree of VR sickness. To do this, we conduct eye-tracking
experiments on a large-scale VR sickness-dedicated database
[15]. Moreover, to quantify the visual attention, we newly de-
vise an information-theory-based entropy measurement for the
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Fig. 2: Exemplar reference scenes in the VR-SP database [15].

VR environment. Furthermore, we show the proposed entropy
of visual attention highly correlates with users’ subjective VR
sickness scores.

II. VR EYE-TRACKING EXPERIMENT

A. VR content stimuli

For the eye-tracking experiment reported in this paper, we
use the VR-SP database that contains 100 individual VR
contents with corresponding VR sickness subjective scores
[15]. The VR-SP database consists of 10 reference VR scenes
while each reference includes 10 sub-scenes having various
degrees of VR sickness. All reference scenes are designed
by artists in the Unity platform. Note that various degrees
of VR sickness in each referenced scene are designed by
combinations of two texture types, two motion types, and
four levels of velocity. Fig. 2 shows examples of 10 reference
scenes in the VR-SP database. We use the 360-degree video
version of VR sequences in the VR-SP database, and those
VR contents have a resolution of 2880× 1600 and a duration
of 10 seconds.

B. Eye-tracking procedure

In the experiment, a total of 21 inexperienced subjects (satis-
fying the subject criteria recommended in [3]) was participated
(17 male, 4 female, ages ranging from 22 to 36). They were
seated in a swivel chair while wearing a HMD device. The
overall eye-tracking protocol included four recording sessions,
each containing 25 randomly shuffled VR content stimuli from
the database. The Unity game engine was utilized to display
all protocols and record head orientation while the eye tracker
collected eye movement. For each subject, the eye-tracker
was calibrated using six points calibration at the beginning
of the protocol. To consistently initialize the fixation point
of each stimulus, subjects were instructed to watch a fixation
cross at the center of a gray screen for 5 seconds. After each
session (25 VR contents), rest periods of 5 min duration were
inserted, to minimize any accumulated VR sickness [22]. We
summarize major information about the test environment in
Table I.

In each session, each VR content stimulus was displayed for
10 seconds while the eye movement was recorded by the built-
in eye-tracker of HTC-VIVE PRO EYE. Here, the subjects
were asked to freely look around the VR content without
any unnecessary restrictions. After recording all subjects’ eye
movements, 3D fixation angles were obtained by combining

Simulation platform Unity
Color depth 24-bits/pixel color frames
Video coder MPEG-4

Subjects 21 inexperienced subjects
Frame resolution 2880×1600

Duration 10 seconds (60 fps)
# of VR content 100

Viewing environment HTC-VIVE PRO EYE
# of fixations per content 12600

TABLE I: Configurations and conditions of the eye-tracking
experiment.

(a) Front region

(b) Top region

Fig. 3: Examples of latitudinal distortions in equirectangular
image. (a) shows the front region distortions in users field of
view and (b) show the top region example.

the head orientation vectors (pitch, yaw, and roll) and gaze
direction vectors w.r.t. each VR content.

III. VISUAL ENTROPY MEASUREMENT

A. Spherical heatmap generation

To quantify the visual attention in the VR environment,
we model a statistical distribution of the fixation points.
To this end, we use a Gaussian mixture model (GMM) on
the spherical coordinates. The distribution of fixation angles
(θti · φti) of tth frame can be defined in spherical domain as

St(θ, φ) =
1

N

N∑
i=1

1

2πσ2
exp

(
− (θ − θti)2 + (φ− φti)2

2σ2

)
,

(1)
where N is the number of subjects, and θi (0 ≤ θi ≤ 2π) and
φi (0 ≤ φi ≤ π) are 3D fixation angles of ith subject.

To derive a 360 degree based fixation distribution model,
we first project the spherical fixation into the equirectangular
domain. Here, we denote the projected heatmap as f t(x, y)
where (x, y) is the pixel position in Cartesian coordinates and
t is the frame index. Finally, for every 10 seconds of VR
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MOS:0.026 MOS:0.209 MOS:0.691 MOS:0.809 MOS:0.130 MOS:0.170 MOS:0.613 MOS:0.809 MOS:0.144 MOS:0.352

MOS:0.026 MOS:0.091 MOS:0.548 MOS:0.939 MOS:0.130 MOS:0.444 MOS:0.861 MOS:0.926 MOS:0.000 MOS:0.039

1 2 3 4 9 105 6 7 8

Fig. 4: Equirectangular heatmap of eye-tracking experimental results and the corresponding sickness mean opinion score (MOS).

content, a total of 600 heatmaps is obtained from the eye-
tracking results. Fig. 4 reports the equirectangular heatmaps
accumulated over 600 frames and corresponding VR sickness
scores for all samples in the database. As aforementioned,
as the VR sickness score increases, the center-bias tendency
more clearly stands out. However, for the lower VR sickness
samples, it may be seen that users’ fixation distributes wider.

B. Cube-based entropy measurement

It is also important to quantitatively analyze how the fixation
distribution varies when VR sickness changes. To do this,
Kim et al. [6] introduced a multi-scale entropy measurement
method for the 2D space. However, in the case of the VR
domain, it is necessary to consider the latitudinal distortions.
Fig. 3 shows examples of latitudinal distortions in the front and
top regions of the equirectangular image. To address this, we
newly define a multi-scale cube-based entropy measurement
that is well-suited in a VR environment by converting the
equirectangular domain into the cubic representation.

Fig. 5 shows a schematic pipeline of cube-based multi-scale
distribution modeling for the entropy measurement. We first
convert a given equirectangular heatmap f t(x, y) into the six
faces (back, down, front, left, right, and top) by projection
method [4]. Then a set of faces are split into multiple scales s.
Followed by the threshold of relative object size (ROS) defined

Fig. 5: Multi-scale distribution model for equirectangular
heatmap.

in [6], [21], we set the number of scales as 20 (ROS > 5%).
We denote the local heatmap distribution for each frame as
Ct

(s,r,m)(x, y) where r and m are the indices of sub-region
and face, respectively. The entropy for each scale, region, and
face can be defined by

Ht
(s,r,m) = −

∑
x,y

C̃t
s,r,m(x, y) log C̃t

s,r,m(x, y). (2)

Finally, the overall entropy of tth frame is expressed as

Ht =
1

snum

∑
s,r,m

Ht
s,r,m, (3)
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Fig. 6: Comparisons of the normal entropy and proposed cube-
based entropy for various fixation maps in equirectangular
domain.

where snum is the number of the scale.
Fig. 6 shows a comparison of the proposed cubic entropy

and the normal entropy calculation [6] using four fixation
heatmaps. In the figure, the dotted lines represent the bound-
aries of top, bottom, front, back, left, and right, as depicted in
the equirectangular to cube-map projection shown in Fig.5. In
the figure, the white circles of case 1 are widely distributed
over the equirectangular image. However, the actual fixation
points to be observed through the HMD are close together
because of latitudinal distortion. Therefore, when the proposed
cubic entropy is calculated, a lower entropy may be obtained.
However, the normal entropy calculation shows the opposite
tendency because this only considers 2D spatial signals with-
out considering the topology of the equirectangular domain.
Similarly, in case 2, since the fixation points are narrowly
distributed only in the top region of the VR environment, the
cubic entropy results in a low value. On the other hand, case 3
shows a narrow distribution. However, in the VR environment,
the fixation points occupy multiple regions from left, right, and
front. In this regard, it is noteworthy that the cubic entropy
thoroughly reflects the visual information experienced by the
user, resulting in a high entropy value.

IV. EXPERIMENTAL RESULTS

A. Temporal analysis

As aforementioned, the visual attention of VR content is
highly related to VR sickness. To analyze temporal visual
attention, we compare the obtained cubic entropy with the mo-
tion feature which is highly correlated with VR sickness. For
the motion feature, the average magnitude of Horn-schunck
method [5] is used. Fig. 7 shows the temporal distributions of
the motion features and the cubic entropy of all scenes in the
VR-SP database. As described in Section II-B, the fixation
of all subjects is initialized to the center region. Therefore,
the entropy at the start of each scene is lowered. When the
sequence has low visual movement (i.e., having lower VR
sickness) such as #1, #2, #5, #6, #9, and #10, it can be seen that
the obtained entropies relatively increased since the subjects
seek to explore the VR environment. Conversely, in the rest of
the scenes with relatively high visual movement (i.e., having
higher VR sickness), the entropies significantly decreased.
From these observations, we conclude that visual attention
with high VR sickness strongly induces center-biased.

Method
VR-SP

PLCC SROCC
Optical flow-based [5] 0.565 0.575

VRSP [9] 0.683 0.756
Kim et al. [10] 0.836 0.833
Kim et al. [7] 0.797 0.712

VRSA-NET [8] 0.843 0.814
Entropy-based (ours) 0.830 0.834

TABLE II: PLCC and SROCC comparisons of VR sickness
prediction models on the VR-SP database.

B. Benchmark results

To validate the correlation between the entropy extracted
from the visual attention and VR sickness scores, we further
compare the performance of the correlation coefficient on
the VR-SP database [15]. Here, we employ two standard
measures: Pearson’s linear correlation coefficient (PLCC) and
Spearman’s rank-order correlation coefficient (SROCC) which
are significant indicators for regression tasks such as quality
and discomfort predictions. The total entropy of each scene is
obtained by averaging overall frame entropy as

Htotal =
1

T

T∑
t=1

Ht, (4)

where T is the total number of frames in a sequence. To fit the
scale of the entropy to VR sickness scores, the mean entropy
value Htotal of each sequence is regressed onto the subjective
score by using four parameter-based logistic fitting [20]:

score = ζ2 +
ζ1 − ζ2

1 + exp

{
−
(
Htotal −

ζ3
|ζ4|

)} , (5)

where the model parameters ζ1, ζ2, ζ3, and ζ4 are obtained by
the least squared error between the Htotal and the subjective
VR sickness scores.

We benchmark the performance of those five following
existing models. For the optical flow model, we use the
average magnitude of the following method [5]. For the VRSP
[9], Kim et al. [7] and Kim et al. [8], we implement as the
same setup with their original work. In the case of Kim et al.
[10], since we don’t have the brain signal data, only the visual
features are used to obtain the prediction score.

Table II shows the performance comparison. As shown in
the table, the performance of entropy shows a competitive
performance than those of previous content-based VR sickness
predictors. This result shows how clearly users’ explorative-
ness is affected by the degree of VR sickness. In other words,
as the VR sickness increases, the visual attention is highly
center-biased by excessive visual movement, hence it implies
that the users’ immersive experience also can be limited. These
experimental results suggest that not only the features obtained
from the content signal but also the physiological response
such as the user’s eye movement can be used as an important
factor in VR sickness assessment.
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Fig. 7: Temporal distribution of motion feature and cubic entropy in the VR-SP database. #1 to #10 indicate ten individual
sub-scenes (duration of 10 sec) of each reference VR scene having diverse degrees of VR sickness.

V. CONCLUSION

Recently, virtual experience technology has improved re-
markably, which raises the importance of understanding VR
sickness in commercial HMD products. In this study, by
measuring visual entropy in a VR environment, we analyzed
how users’ visual attention changes according to the degree
of VR sickness. From the experimental results, we verified
the users’ visual attention is highly restricted as the VR
sickness increases, i.e., immersive experience in VR content
is also limited in higher VR sickness. In other words, the eye-
tracking results of users in a VR environment can be used
as a significant factor to evaluate subjective or objective VR
sickness assessment.
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