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Abstract—Current augmented reality (AR) head-mounted dis-
plays (HMDs) have rapidly developed with the users’ requirement
to expand the real-world experience to the virtual world. To
bridge the real and virtual space, mid-air hand gestures have
been regarded as a de-facto interaction method for AR systems.
However, providing natural interaction is still limited and mea-
suring the quality of interaction (QoI) has received little attention.
In this research, we explore a comprehensive study for perceptive
QoI in AR HMDs, focusing on frequently used object interaction
tasks. To quantitatively analyze the degree of QoI, we develop an
AR-QoI database (e.g., select, translation, and rotation) with 72
content scenes that include mutually independent attributes. A
novel protocol for QoI evaluation was designed to collect robust
subjective opinions in conjunction with object data from 32
participants. Through a systematic formative study, we identify
challenges that the user might face when interacting with un-
familiar motion. Moreover, we discover meaningful relationships
between various combinations of interaction types and the degree
of QoI by clustering scene attributes. Notably, the constructed
dataset contains a number of ground-truth labels that correspond
to each AR scene. Through rigorous statistics evaluation, we
demonstrate that our framework is reasonable for measuring
QoI.

I. INTRODUCTION

To maximize the sense of reality, visual content is developed
for more expressive environments such as augmented, virtual,
and mixed reality (AR, VR, and MR). Among them, the AR
industry is rapidly emerging, and user expect an increasingly
high quality of interaction (QoI) for AR services. To bridge
real and virtual space, the hand gesture is regarded as one
of the most commonly accepted interaction methods in AR
environment [1]–[4]. Therefore, various hand gesture interac-
tion techniques such as retargeting [5], redirection [6], psudo-
haptics [7], and control to display [8] are incorporated into AR
services. Despite this success, humans still unsatisfy current
AR QoI system due to unwanted distrubances including com-
putational delay and unfamiliar interaction, and this is regarded
as a hindrance to the development of the related industry.

Improving interaction performance has been studied in the
field of computer vision area to enhance model accuracy
(hand detection, tracking, and joint estimation) or to reduce
computational cost (hand mesh rendering). On the other hand,
measuring QoI from the user’s perspective has received little
attention. In this research, we explore comprehensive studies
quantifying the user’s interaction satisfaction in AR contents
which is an essential factor to provide an improved system.

Fig. 1. Overview of the interaction cases regarding the physical and virtual
movements with differently remapped virtual hands.

However, these studies have not been benefited from the avail-
ability of sizeable labeled datasets. To this end, we develop a
new and large database that is capable of exploring dominant
factors that lead to reduced QoI.

This research begins with a formative study to examine the
challenges that users might face when interacting with AR
HMDs. As shown in Fig. 1, inaccurate capturing of hand ges-
tures from real-space to virtual-space makes interaction tasks
much more challenging, resulting in insufficient experience
in AR environments. More specifically, if the virtual hand
is reconstructed forward of the physical hand, the perceptive
interaction range will increase (case2), and vice versa, the in-
teraction range will decrease (case3). The discrepancy between
the real-world and virtual-world interaction provokes self-
contributing movements, which are unnecessary movements
to fully control virtual hand behavior [9]–[14]. Therefore, we
hypothesize that mapping virtual hands correctly can provide
sufficient QoI [15], [16]. Based on this assumption, we propose
a comprehensive study to find interaction attributions that
hinder motion remapping from real space to virtual space.

To achieve our goal, we first examine any interaction
gestures in AR HMDs which may cause in-use difficulties
to users. After that, we categorize the types of hand gesture
interactions according to the complication levels based on the
subjects’ comments, our observations, and interviews. The
synthetic AR content produced contains 72 contents with
different interaction types that correspond to various gesture
poses. We design a novel QoI evaluation protocol to obtain
self-diagnosis responses using questionnaires. Moreover, we
obtain a subjective QoI score for each AR content using a
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TABLE I
LIST OF CONTENT AND THE CORRESPONDING ATTRIBUTES IN AR QOI DATASET

Content
index

Interaction
type

Hand gesture
type

Position of
virtual object

Interaction
with

reference

Content
index

Interaction
type

Hand gesture
type

Position of
virtual object

Interaction
with

reference

Content
index

Interaction
type

Hand gesture
type

Position of
virtual object

Interaction
with

reference
C001

Select

Index

Close +
Predictable

O C025

Translation

Pinch
(With open

fingers)

Close +
Predictable

O C049

Rotation

Pinch
(With open

fingers)

Close +
Predictable

O
C002 X C026 X C050 X
C003 Close +

Unpredictable
O C027 Close +

Unpredictable
O C051 Close +

Unpredictable
O

C004 X C028 X C052 X
C005 Far +

Predictable
O C029 Far +

Predictable
O C053 Far +

Predictable
O

C006 X C030 X C054 X
C007 Far +

Unpredictable
O C031 Far +

Unpredictable
O C055 Far +

Unpredictable
O

C008 X C032 X C056 X
C009

Index +
middle

Close +
Predictable

O C033

Pinch
(With close

fingers)

Close +
Predictable

O C057

Pinch
(With close

fingers)

Close +
Predictable

O
C010 X C034 X C058 X
C011 Close +

Unpredictable
O C035 Close +

Unpredictable
O C059 Close +

Unpredictable
O

C012 X C036 X C060 X
C013 Far +

Predictable
O C037 Far +

Predictable
O C061 Far +

Predictable
O

C014 X C038 X C062 X
C015 Far +

Unpredictable
O C039 Far +

Unpredictable
O C063 Far +

Unpredictable
O

C016 X C040 X C064 X
C017

Full hand

Close +
Predictable

O C041

Grab

Close +
Predictable

O C065

Grab

Close +
Predictable

O
C018 X C042 X C066 X
C019 Close +

Unpredictable
O C043 Close +

Unpredictable
O C067 Close +

Unpredictable
O

C020 X C044 X C068 X
C021 Far +

Predictable
O C045 Far +

Predictable
O C069 Far +

Predictable
O

C022 X C046 X C070 X
C023 Far +

Unpredictable
O C047 Far +

Unpredictable
O C071 Far +

Unpredictable
O

C024 X C048 X C072 X

graphical user interface during the rating procedure. Based
on data acquired from 32 subjects, we perform statistical
tests to identify a quantitative relationship between various
factors, QoI, and its severity. To verify the superiority of the
constructed dataset, we use QoI prediction schemes. We report
the predictive performance in terms of the correlation to the
subject’s scores.

II. FORMATIVE STUDY

We could not find any prior work that has focussed on
measuring the QoI considering both hand gesture types and
interaction type in AR HMD scenarios. To guide our QoI
dataset construction, we carried out a formative study to figure
out the in-use difficulties during user interaction with virtual
objects according to mutually independent attributes.

A. Formative Study: Method

The 23 inexperienced participants (satisfying the subject
criteria recommended in [17]) were recruited for the formative
study. All participants were of ages ranging from 22 to 34
years and were screened for normal visual acuity on the
Landolt chart. For the study, each participant was exposed
to a variety of mid-air hand interaction tasks (e.g., manipulat-
ing virtual objects in MRTK HandInteractionExample scene).
After the tutorial, participants interacted with the AR-HMD
evaluation following a thinking-aloud protocol [1]. They were
asked to record what they found, what challenges they had, and
which interaction attributes led to hinder the AR immersion.

B. Formative Study: Findings

We found 3 main attributes that were extrapolated from
participants’ comments, our observation during each formative
study, and post-questionnaires.

1) Interaction types: During the study, participants were
exposed to well-used interaction gestures in AR contents
which are provided as a standard in the HoloLens device (e.g.,
bloom, ready, tap, hold, and drag). Using a variety of gestures,
they conducted AR interaction scenarios including object
selection, translation, and rotation. In most cases, perceptually
natural interactions were recorded in the scenarios involving
simple types of interactions. On the other hand, scenarios in-
volving complex types of interaction led to discomfort feelings
and questioned the ability to work with AR devices. This
finding led us to hypothesize that reconstruction mismatch
between virtual and real hands could occur more in complex
interaction scenarios.

2) Distance to virtual objects: From the study, participants
responded that it would be helpful for interactable virtual
objects to maintain QoI if they are positioned in a balanced
place. In particular, when the virtual object was located close
to the display, participants indicated that the device could not
provide a natural QoI because of the interaction boundary
awareness issue caused by limited device geometry. On the
contrary, participants reported discomfort when the virtual
object was located farther than the users’ arm length. By
positioning virtual objects at a proper place, we could prevent
participants’ hands from colliding with real-world objects or
going out of the device geometry.

3) Predictable interaction: We found another important
factor through formative study. Participants tended to report
favorable experiences when faceing predictable object interac-
tion situations. In particular, when virtual objects are crucially
located and interaction types are predictable, participants felt
the interactions more natural. This was reasonable because the
mechanism controlling body balance in the brain is much more
stable when they estimate predictable body motion.
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Fig. 2. Visualization of representative example of AR content.

III. DATASET CONSTRUCTION

Findings from the formative study guided us to construct
the novel dataset to measure QoI in AR environments. The
main scenario of the generated AR content was developed
and run using the Unity3D engine. We chose three well-used
interaction types: select, translation, and rotation. Using this,
our dataset was constructed according to the core mutually
independent attributes described below. Furthermore, we set
the background of all scenes as empty spaces so that the
subjects can focus more on virtual object interaction. The
factors used in content construction are summarized in Table
I and we visualize the representative AR content in Fig. 2.

A. Hand Gesture Type

This condition provides the user to interact with virtual
objects in a variety of hand poses, ranging from micro-gesture
to macro-gesture. In the selecting case, we employ three hand
gestures including index finger, index+middle finger, and full
hand. For each content, subjects choose the virtual object only
using the designated fingers. For both translation and rotation
cases, pinch (with open fingers), pinch (with close fingers),
and grab are utilized for the hand gesture types. To distinguish
each hand gesture type, we utilize the OpenCV hand gesture
recognition library.

B. Position of Virtual Object

In each scenario, the virtual objects are positioned based on
the subject’s arm length, referring to the formative study. To
do this, we measure the arm length of each subject and record
the AR environment before conducting a subjective evaluation.
The device then automatically displays the virtual object
inside or outside of this criterion. Furthermore, we reflect
predictable interaction factors discussed in the formative study.
This condition is implemented by allowing the virtual objects
that appear in each scenario to be determined or to appear in
a random location.

C. Interaction with Reference

We construct a dataset to ensure that the guidelines ef-
fectively provide natural interaction quality. This is achieved
by providing references that allow users to easily interact
with virtual objects. Therefore, participants execute a reaching
movement with visual feedback of the interaction direction. By
doing so, we can figure out that users are aware of the tracked
interaction area and record plausible interaction scores. On the

Fig. 3. Designed protocol for subjective QoI evaluation.

content table, ’O’ and ’X’ represents whether the reference is
provided or not.

IV. SUBJECTIVE ASSESSMENT

A. Subjective Assessment: Protocol

Both objective data (i.e., rendered hand data, scene param-
eters, and interaction duration) and subjective data (opinions
on the degree of QoI) are collected when the subjects conduct
the constructed AR contents. For this analysis, we design a
novel evaluation protocol as shown in Fig. 3.

Before the evaluation, we provided tutorial content intro-
ducing the evaluation process and the degrees of QoI. During
the interaction, six AR scenes were shown, broadly covering
the range of AR factors. This process helped to record more
reliable data in two ways. First, participants became familiar
with the interaction methods used in the experiment, which
helped to avoid potentially unwanted manipulation errors.
Second, the tutorial led participants to normalize subjective
opinion scores within the overall AR scene due to human
psychological expectations [18].

Following the tutorial session, the full assessment session
consists of three parts: a rest session, a display session, and
an evaluation session. Rest periods of 1 min duration were set
to minimize any accumulated feeling of AR sickness. In each
session, an AR sequence was displayed. Depending on the
user’s proficiency, the display session’s time was differently
recorded. After finishing each interaction in content, partici-
pants asked to record subjective QoI scores using a 5-points
Likert scale marked as follows: Extremely Uncomfortable (5),
Uncomfortable (4), Mildly Comfortable (3), Comfortable (2),
and Very Comfortable (1).

B. Subjective Assessment: Analysis

After subjective evaluation, we validate the subjective score
obtained from each content through statistical analysis. To
this end, we first compute the mean opinion score (MOS)
represented as:

dk =

∑N
j=1 sjk

N
, (1)

where N is the number of subjects and sjk is the score
delivered by subject j on the content k.

To measure the statistical reliability of the predicted data, we
computed the confidence interval(CI) on the obtained MOS.
Using the MOS, the CI of 100× (1−α)% is computed using
the interval estimation:
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Fig. 4. MOS of content for (a) Overall, (b) Select, (c) Translation and (d)
Rotation

CI = dk ± Zα/2 ·
σ√
N
, (2)

where dk is the computed MOS of each content, σ is the
standard deviation, and Zα/2 is the z−score for α/2. For this
research, we set α = 0.05 in accordance with a confidence
level of 95%, and N = 32 as to the number of subjects.

Fig. 4 shows the content MOS averaged for each interaction
with a 95% confidence interval. Each bar represents the
average result of the three hand gesture type for the 8 contents.
By constructing the dataset using the independent variables
from the formative study, we have achieved in distributing the
subjective scores to the 5 scores without being biased towards
a specific score.

V. OBJECTIVE ASSESSMENT

After obtaining the level of QoI score from the evaluation
session, this subjective score is used as the ground-truth label
of the corresponding AR scene for supervision of the QoI
prediction model. To show how this constructed dataset can
quantify the level of QoI, we designed simple features by
adopting both meta data from HMDs device and recorded
videos. These features are regressed onto the subjective score
by using support vector regression (SVR).

A. Objective Assessment: Method

The overall processing of the objective assessment is de-
picted in Fig. 5. As we mentioned above, differently remapped
virtual hands are an important contributing factor of QoI. In
this context, to extract representative features that reflect real
and virtual mismatch in the AR environment, we use an optical
flow algorithm [19] and hand mesh position represented in
cartesian coordinates.

Let mn,t be the motion vector of the nth pixel at the
tth frame. The first motion feature f1 is the average motion
magnitude obtained by spatiotemporal mean pooling of mn,t

in the AR content:

f1 =
1

T ·N
∑
t

∑
n

|mn,t|, (3)

where N and T are the total number of motion vectors
and frames, respectively. Moreover, the variance of motion

Fig. 5. Framework of objective assessment.

magnitude is extracted to represent the holistic distribution of
motion vector for QoI measure, which is defined as:

f2 =
1

T ·N
∑
t

∑
n

(|mn,t − f1|)2. (4)

After we define motion factors, the relative difference between
real and virtual positions is represented using the recorded
hand position ordinate in word coordinate. Motivated by
previous literature [20], we compute flow field in each frame
as follow:

f3 = un,t −
Ix,tun,t + Iy,tvn,t + Iz,t

λ+ I2x + I2y + I2z
Ix,t, (5)

f4 = vn,t −
Ix,tun,t + Iy,tvn,t + Iz,t

λ+ I2x + I2y + I2z
Iy,t, (6)

f5 =
Ix,tun,t + Iy,tvn,t + Iz,t

λ+ I2x + I2y + I2z
Iz,t, (7)

where Ik,t is relative difference calculated by k(t)− k(t− 1)
and k = x, y, z, and un,t and vn,t are the subset of motion
factor which is obtained as mn,t =

∑
(u2n,t + v2n,t).

Using the above-defined features, we learn the SVR along
with the subjective QoI score. At each trial, the randomly
chosen training set consists of 80% of the constructed dataset
with data-label pairs, and the test set consists of the remaining
20% data-label pairs.

B. Objective Assessment: Result

Predictive performance was evaluated using Spearman’s
rank-order correlation coefficient (SRCC) and Pearson’s linear
correlation coefficient (PLCC) relative to the QoI score. Table
II shows the performance of the tested models in terms of
SRCC and PLCC. To better understand the contributions of
each extracted feature, we compared the performance of the
subset using the various feature combination. Although simple
features are extracted, the prediction model shows reasonable
performance. Note that when f1 − f5 are employed to train
the model, we achieve the best predictive performance, which
means that all the features are partially correlated with the QoI
score. Otherwise, when the motion features from the captured
video are simply used to train the model, the predictive
performance decreases. The result shows that stronger real
and virtual remapping differences stimulate a higher degree
of degraded QoI.
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TABLE II
PERFORMANCE OF 100 TRIALS OF RANDOMLY

CHOSEN TRAIN AND TEST SETS

Features Train Test
SRCC PLCC SRCC PLCC

(f1, f2) 0.4032 0.4178 0.4142 0.3996
+f3 0.5138 0.5389 0.5083 0.5128
+f4 0.5828 0.6032 0.5739 0.5914
+f5 0.6588 0.6727 0.6439 0.6631

VI. CONCLUSIONS

In this paper, we have proposed a framework to evaluate
the interaction quality of hand gestures in the AR HMD
environment. To this end, we first conducted a formative study
to figure out the difficulties when the user interacts with virtual
objects. The constructed dataset covers various key attributes
discussed from the formative study. Using this AR content,
we performed a subjective assessment by adopting a 5-points
Likert scale. To further validate our dataset, we show how
this dataset can quantify the level of QoI. Therefore, we first
design simple features using the recorded data, and then, these
features regressed with the corresponding subjective scores
for the supervision of QoI prediction model. We expect that
our proposed framework can more easily predict user QoI for
newly created hand gestures in AR environments, which will
lead to the implementation of more diverse functions in line
with the rapid development of the AR industry.
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