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Abstract—Distributed arithmetic coding (DAC) has been shown
to be effective for Slepian-Wolf coding, especially for short data
blocks. In this paper, we propose to use the DAC to compress
memory-correlated sources. More specifically, the correlation
between sources is modeled as a hidden Markov process. Because
image pixels are correlated, the image is modeled as a hidden
Markov source then DAC compression is implemented, and
forward algorithms are embedded in the decoding process.
Experimental results show that the performance is close to the
theoretical Slepian-Wolf limit. When the image is used as a
hidden Markov source for DAC compression, it shows lower error
rate.

I. INTRODUCTION

We consider the problem of Slepian-Wolf Coding (SWC)

with decoder Side Information (SI). The encoder compresses

discrete source X = {xt}
N
t=1 in the absence of Y = {yt}

N
t=1,

discretely correlated SI. Slepian-Wolf theorem points out that

lossless compression is achievable at rates R ≥ H(X |Y ), the

conditional entropy of X given Y , where both X and Y are

discrete random processes [1]. Conventionally, channel codes,

such as turbo codes [2] or Low-Density Parity-Check (LDPC)

codes [3], are used to deal with the SWC problem.

Some SWC techniques based on entropy coding are pro-

posed, such as Distributed Arithmetic Coding (DAC) [4, 5]

and Overlapped Quasi-Arithmetic Coding (OQAC) [6]. These

schemes can be seen as an extension of classic Arithmetic

Coding (AC) whose principle is to encode source X at rates

H(X |Y ) ≤ R < H(X) by allowing overlapped intervals,

where H(X) is the entropy of the source. The overlapping

leads to a larger final interval and hence a shorter codeword.

However, ambiguous codewords are unavoidable at the same

time. A soft joint decoder exploits SI Y to decode X .

Afterwards, the time-shared DAC (TS-DAC) [7] is proposed

to deal with the symmetric SWC problem. To realize rate-

incremental SWC, the rate-compatible DAC is proposed in

[8]. [10] developes the DAC spectrum to assist in decoding

and analyzed its complexity for equivalent sources, detailed

analysis of the coding efficiency of binary DAC coding in

[11].

In this paper, we research how to use the DAC to compress

sources with hidden Markov correlation.

II. BACKGROUND REVIEW

A. Binary Distributed Arithmetic Coding

Distributed arithmetic code is a coding scheme based on

distributed source coding and using arithmetic code as the core

0 1− pγ (1− p)γ 1

Fig. 1. distributed arithmetic coding.

of the codec.

Let p be the bias probability of binary source X , i.e.,

p = P (xt = 1). In the classic AC, source symbol xt is

iteratively mapped onto sub-intervals of [0, 1), whose lengths

are proportional to (1 − p) and p. The resulting rate is

R ≥ H(X). In the DAC [4], interval lengths are proportional

to the modified probabilities (1−p)γ and pγ , where 0 ≤ γ ≤ 1
is the overlap factor. To fit the [0, 1) interval, the sub-intervals

have to be partially overlapped. More specifically, symbols

xt = 0 and xt = 1 correspond to intervals [0, (1 − p)γ) and

[1 − pγ , 1), respectively, [1 − pγ , (1 − p)γ) is called overlap

interval as shown in Fig. 1.

It is just the overlapping that leads to a larger final interval,

and hence a shorter codeword. However, as a cost, the decoder

can not decode X unambiguously without Y .

For binary sources, the rate after message encoding is

R = −p log2 p
γ − (1− p) log2((1 − p)γ) = γH(X). (1)

If the source X is a binary equivalent source, that is p = 0.5,

then H(x) = 1, R = γ. According to Slepian-Wolf theorem,

R = γH(X) ≥ H(X |Y ). (2)

Therefore, the range of the overlap factor is

H(X |Y )/H(X) ≤ γ<1. (3)

To describe the decoding process, we define a ternary

symbol set {0, χ, 1}, where χ represents a decoding ambiguity.

Let CX be the codeword and x̃t be the t-th decoded symbol,

then

x̃t =







0, 0 ≤ CX < 1− pγ

χ, 1− pγ ≤ CX < (1− p)γ

1, (1− p)γ ≤ CX < 1

. (4)

When the t-th symbol is decoded, if x̃t = χ, the decoder

performs a branching: two candidate branches are generated,

corresponding to two alternative symbols xt = 0 and xt = 1.

For each new branch, its metric is updated and the correspond-

ing interval is selected for next iteration. To reduce complexity,

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1506978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



every time after decoding a symbol, the decoder uses the M -

algorithm to keep at most M branches with the best partial

metric, and prunes others [4].

Note that the metric is not reliabe for the last symbols of

a finite length sequence X [5]. The problem is solved by

encoding the last T symbols without interval overlapping [5].

It means that for 1 ≤ t ≤ (N − T ), xt is mapped onto

[0, (1− p)γ) and [1− pγ, 1); while for (N −T +1) ≤ t ≤ N ,

xt is mapped onto [0, 1− p) and [1− p, 1).
Therefore, a binary DAC system can be described by four

parameters: {p, γ,M, T }.

B. Hidden Markov Model

Hidden Markov Model (HMM) is a statistical model, which

is used to describe a Markov process with hidden unknown

parameters.

The sequence that can be directly observed in the hidden

Markov model is called the sequence of observations, and its

value depends on the sequence of hidden states. Each hidden

state of the HMM generates an observation value with a certain

probability distribution, so the information of the sequence of

hidden states can be obtained through the information of the

sequence of observations.

Let S = {st}
N
t=1 be a sequence of hidden states and

Z = {zt}
N
t=1 be a sequence of observations. A hidden Markov

process is defined by λ = (A,B, π):
A = {aji}: state transition probability matrix, where aji =

P (st = i|st−1 = j);
B = {bi(k)}: observation probability distribution, where

bi(k) = P (zt = k|st = i);
π = {πi}: initial state distribution, where πi = P (s1 = i).

III. METHODOLOGY

As mentioned above, the HMM includes observation se-

quence and hidden sequence. We can obtain the hidden se-

quence with the help of observation sequence. The distributed

arithmetic code obtains the source with the assistance of side

information, so we can use the hidden Markov process to

establish the correlated source, and decode by solving the

hidden sequence. Because of the correlation between image

pixels, we apply this scheme to the image.

A. DAC for Hidden Markov Correlation

Assume that binary source X and SI Y are correlated by

Y = X⊕Z , where Z is generated by a hidden Markov model

with parameter λ. X is encoded using a {p, γ,M, T } DAC

encoder.

There are three different ways to solve different hidden

Markov problems, the aim of forward algorithm is to compute

P (z1, ..., zt|λ), given observation {z1, ..., zt} and model λ, so

we can embed the forward algorithm into the DAC decoder.

The decoding process is very similar to what described in

[4]. The only difference is that the metric of each branch is

replaced by P (z1, ..., zt|λ), where zt = xt ⊕ yt. The forward

algorithm process is as follows:

Let αt(i) be the probability of observing the partial se-

quence {z1, ..., zt} such that state st is i, i.e.,

αt(i) = P (z1, ..., zt, st = i|λ). (5)

Initially, we have

α1(i) = πibi(z1). (6)

For t > 1, αt(i) can be induced through iteration

αt(i) = {
∑

j

[αt−1(j)aji]}bi(zt). (7)

Therefore,

P (z1, ..., zt|λ) =
∑

i

αt(i). (8)

In practice, αt(i) is usually normalized by

αt(i) =
αt(i)

δt
, (9)

where

δt =
∑

i

αt(i). (10)

In this case, we have

P (z1, ..., zt|λ) =

t
∏

t′=1

δt′ . (11)

B. Image Compression

The pixels of an image are related, so we can use DAC-

based HMM to compress the image. We use one line of the

image as the source X , so for an n-line image, n encoding and

decoding processes are required respectively. Before encoding,

we need to obtain the hidden Markov model parameter λ.

The Baum-Welch is an algorithm for solving HMM param-

eter. It is an unsupervised learning algorithm, because the

Baum-Welch algorithm only uses the observation sequence

when solving the model parameter, instead the hidden se-

quence.

When we use λ to describe the hidden Markov process, the

Baum-Welch algorithm looks for the local maximum of λ∗ =
argmaxλP (Z|λ), which is the HMM λ that can maximize

the probability of the observed sequence.

The Baum-Welch algorithm requires forward variables,

which can be obtained by (6)-(7), and the backward variables

are as follows, let βt(i) = P (zt+1, ..., zN |st = i, λ) be the

probability that the state at time t is i, the remaining part of

the observation sequence is {zt+1, ..., zN}, we calculate βt(i)
as,

βN (i) = 1, (12)

βt(i) =
∑

j

[βj(t+ 1)aij ]bj(zt+1). (13)
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Fig. 2. DAC-based HMM applied to image.

Let γt(i) denote the probability of being in the state i at

time t given the observation sequence and parameter λ :

γt(i) = P (st = i|Z, λ)

=
P (st = i, Z|λ)

P (Z|λ)

=
αt(i)βt(i)

∑

j αt(j)βt(j)
.

(14)

Let ξt(i, j) denote the probability that the time t is state i and

the time t+ 1 is in the j given the observation sequence and

parameter λ :

ξt(i, j) = P (st = i, st+1 = j|Z, λ)

=
P (st = i, st+1 = j, Z|λ)

P (Z|λ)

=
αt(i)aijβt+1(j)bj(zt+1)

∑

k

∑

w αt(k)akwβt+1(w)bw(zt+1)
.

(15)

Then update the parameters,

π∗

i = γi(1), (16)

which is the probability that the state is i at time 1.

a∗ij =

∑N−1

t−1
ξt(i, j)

∑N−1

t=1
γi(t)

, (17)

b∗i (k) =

∑N

t=1
1zt=kγi(t)

∑N

t=1
γi(t)

, (18)

where

1zt=k =

{

1 if zt = k

0 otherwise.
(19)

Repeat the above steps until convergence, the parameter λ
of HMM can be obtained .

In an image with a size of n ∗ N , XOR two adjacent

rows of pixels to obtain an image of (n − 1) ∗ N size. Let

each line of pixels in image after XOR operation as the

observation sequence, and obtain HMM λi through Baum-

Welch algorithm.

The model parameter of image compression can be de-

scribed as

λ =

∑n−1

i=0
λi

n− 1
. (20)

Each line of the image is compressed as the source X , when

p = 0 or p = 1, i.e., this line of the image is all white or all

black, use arithmetic coding for the current line, γ = 0 at this

time. Otherwise, the DAC encoder compresses this line. The

specific process is shown in Fig. 2.

IV. EXPERIMENTAL RESULTS

In the experimental part, we finished two parts of work.

First, we compressed the virtual source and compared it with

LDPC-based HMM [9]. In the second part, we compressed

two different types of images.

A. Compared with LDPC

We have implemented a 16-bit DAC codec system. The bias

probability of X is p = 0.5. According to the recommendation

of [5], we set M = 2048 and T = 15. The same 2-state (0

and 1) and 2-output (0 and 1) sources as in [9] are used in

simulations (see Table I). The length of data block used in

each test is N = 1024.

To achieve lossless compression, each test starts from

γ = H(X |Y ) (see Table II). If the decoding fails, we increase

γ with 0.01. Such process is iterated until the decoding

succeeds. For each model, results are averaged over 1000

trials. Experimental results are listed in Table II.

For comparison, experimental results for the same settings

from [9] are also included in Table II. In each test of [9],

N = 16384 source symbols are encoded using an LDPC

code. In addition, to synchronize the hidden Markov model,

Nα original source symbols are sent to the decoder directly

without compression.

The results show that the DAC performs similarly to or

slightly better than (for models 1 and 2) the LDPC-based

approach [9]. Moreover, for hidden Markov correlation, the

DAC outperforms the LDPC-based approach in two aspects:

TABLE I
MODELS FOR SIMULATION

model {a00, a11, b0(0), b1(1)}

1 {0.01, 0.03, 0.99, 0.98}

2 {0.01, 0.065, 0.95, 0.925}

3 {0.97, 0.967, 0.93, 0.973}

4 {0.99, 0.989, 0.945, 0.9895}
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TABLE II
EXPERIMENTAL RESULTS

model H(X|Y ) [9] DAC

1 0.24 0.36 0.345449

2 0.52 0.67 0.633043

3 0.45 0.58 0.583429

4 0.28 0.42 0.424827

1). The LDPC-based approach requires longer codes to

achieve better performance, while the DAC is insensitive to

code length [4].

2). For the LDPC-based approach, to synchronize the HMM,

a certain proportion of original source symbols must be sent

to the decoder as “seeds.” However, it is hard to determine α,

the optimal proportion of “seeds.” The results reported in [9]

were obtained through an exhaustive search, which limits its

application in practice.

B. Application in image

For this part of the experiment, we chose two binary images

with the pixel value of 0 or 1, which can be used as binary

source.

First, we encode a black-and-white text image in the Fig.

3(a), its size is 512*512, therefore N = 512. Fig. 3(b) is the

image after XOR operation. Like above, we set M = 2048 and

T = 15. In order to achieve lossless compression, therefore

test starts from γ = H(X |Y )/H(X), if the decoding fails,

we increase γ with 0.01 until the decoding succeeds. Fig. 4

is the distribution of the overlap factor of each line when the

image is completely correctly decoded. There can be seen a

portion of the overlap factor is 0, which means that the pixels

in these rows are all black or white, arithmetic coding.

When the overlap factor of each line is set to γ =
H(X |Y )/H(X), we compare with the Maximum A Posteri-

ori(MAP) decoder [4], and the results are shown in Table III.

We found that the frame-error-rate(FER) and symbol-error-

rate(SER) of the DAC-based HMM method are lower.

(a) (b)

Fig. 3. (a) is the original image before compression, (b) is the image subjected
to XOR operation, which obtains the HMM parameter λ through the Baum-
Welch algorithm.

50 100 150 200 250 300 350 400 450 500
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Fig. 4. distribution of the overlap factor.

TABLE III
ERROR RATE OF IMAGE

method value

HMM-SER 0.068264

MAP-SER 0.370422

HMM-FER 0.625

MAP-FER 0.712891

For the second test image, we chose an international stan-

dard test image. This paper is aimed at binary sources, so we

binarized the image as shown in Fig. 5(a).

Different overlap factors are used in the test. In Fig. 5(b),

when γ takes the minimum value H(X |Y )/H(X) of the

range, the error rate is relatively high, but the person in

the picture can basically be recognized. It can be seen from

Fig. 5(b)-(d) that the larger the overlap factor, the higher the

restoration degree of the picture, but at the same time the rate

R = γH(X) will also increase. Therefore, in actual applica-

tions, the value of the overlap factor can be set according to

the need for data accuracy.

The above simulation results show that the image compres-

sion method proposed in this paper is feasible. Compared with

the classic method MAP, the error rate is reduced a lot. In

addition, the experimental results show that the overlap factor

has a significant impact on the accuracy of image decoding,

so we need to choose an appropriate overlap factor.

V. CONCLUSION AND FUTURE WORK

This paper researches the compression of sources with

hidden Markov correlation using the DAC. The forward al-

gorithm is incorporated into the DAC decoder. The results

are similar to that of the LPDC-based approach. Compared

to the LDPC-based approach, the DAC is more suitable for

practical applications. Therefore, this paper applies it to image
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(a) original image (b) γ = H(X|Y )/H(X)

(c) γ = H(X|Y )/H(X) + 0.1 (d) γ = H(X|Y )/H(X) + 0.2

Fig. 5. (a) is the original image before compression, (b)-(d) is the image
decoded by setting the value of different overlap factor γ.

compression. For decoder embedded with forward algorithm,

it shows a lower error rate than MAP, and we analyze the

effect of overlap factor on error rate.

This paper is aimed at binary sources, we intend to expand

to multi-valued sources in the future. Moreover, HMM is

a widely used statistical model, which can be applied to

modeling in many fields. The distributed arithmetic coding

method based on HMM proposed in this paper can be applied

to more fields.
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