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Abstract—Recently, single image super-resolution (SISR) meth-
ods using deep convolution neural networks (CNNs) have
achieved remarkable performance. Especially, lightweight net-
works have received unprecedented attention because of their
broad application prospects. However, existing methods for
lightweight SR lack the adequate utilization of hierarchical
features, which weakens the representation ability of the net-
work. To alleviate this issue, we propose an effective and
accurate multi-residual feature fusion network (MRFFN) for
SISR. Specifically, we design a multi-residual block (MRB) to
boost the representation ability of the network. By adopting
the multi-residual learning (MRL) strategy, MRB can efficiently
improve reconstruction results while halving the parameters,
compared with the ordinary residual block (RB). To use the
hierarchical features sufficiently, we construct a multi-residual
fusion block (MRFB) by cascading the MRBs. Finally, we build
our MRFFN by densely stacking MRFBs and introduce double-
residual learning (DRL) strategy into the network at the global
level. Extensive experiments demonstrate that the MRFFN is
superior to the state-of-the-art SISR models while taking up less
computing resources.

Index Terms—Single Image Super-Resolution, Convolution
Neural Network, Lightweight Network, Multi-Residual Feature
Fusion.

I. INTRODUCTION

Single image super-resolution (SISR) is a classical low-level
computer vision task, which aims at reconstructing a high-
resolution (HR) output image from its degraded low-resolution
(LR) observation. However, SISR is inherently ill-posed since
numerous HR images can be mapped to an identical LR
observation. To solve this problem, numerous SISR methods,
including interpolation-based strategies [1], reconstruct-based
methods [2], and learning-based models [3], [4], [5], [6], [7],
[8] have been proposed one after another.

In recent years, deep convolution neural networks (CNNs)
have been proposed to boost the feature representation ability
for accurate SISR predictions, which achieved outstanding
reconstruction performance. As a pioneer, Dong et al. con-
structed SRCNN to establish a non-linear mapping from LR
images to HR counterparts and obtain promising results. From
then on, a flurry of researchers who studied CNN-based meth-
ods [9], [10], [11], [12], [13] have dedicated searching a proper
mapping function from an interpolated input to its HR output.
Moreover, to enhance the representation ability of networks,
many existing methods [5], [11], [13], [14] attempted to
enlarge their receptive fields directly by deepening or widening

the networks. Although CNN-based SR models have made
significant progress, the expensive computational consumption
makes it difficult to adopt deep CNNs in practical applications.

To this end, numerous lightweight methods [10], [15], [16]
were proposed to construct more efficient and accurate net-
works, which can meet the requirement of real-world applica-
tions. DRRN [10], DRCN [6], and CARN [15] adopted the re-
cursive learning mechanism to form the lightweight networks
while consuming fewer parameters. Hui et al. introduced the
information distillation strategy and its variant to construct
IDN [16] and IMDN [17], which effectively combined the
informative features and enlarged the receptive fields for
hierarchical features extraction. Although remarkable progress
has been made in the above-mentioned lightweight networks,
they still have the following limitations: (1) Most lightweight
SR modules seldom achieve a superior balance between the
number of parameters and the reconstruction performance; (2)
Most of the lightweight SR methods do not make full use
of the hierarchical features for image reconstruction, thereby
hindering the network representation ability.

To address the above issues, we proposed a multi-residual
block (MRB) to make outstanding balance and adopted a
multi-residual learning (MRL) strategy to use the hierar-
chical features sufficiently. On one hand, we introduced a
mixed attention module (MAM) to build the MRB, which
can achieve a satisfying trade-off between performances and
parameters. Extensive experiments have demonstrated that the
MRB can obtain comparable performance while maintaining
a reasonable number of parameters. On the other hand, we
designed a multi-residual fusion block (MRFB) to fully use
the hierarchical features, which adopted the multi-residual
learning (MRL) strategy. Besides, by employing the double-
residual learning (DRL) strategy, our multi-residual feature
fusion network (MRFFN) showed better reconstruction results.

Our contributions of the proposed method can be summa-
rized in the following two folds:

1. We employ the double-residual learning (DRL) strategy
at the global level to form our multi-residual feature fusion
network (MRFFN) (see Fig. 1) for lightweight SISR. Exper-
imental results demonstrate that the proposed network can
achieve a favorable trade-off between the network parameters
and reconstruction performances. Meanwhile, compared with
the other state-of-the-art methods, our MRFFN has remarkable
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Fig. 1. Schematic diagram of multi-residual feature fusion network (MRFFN) framework.

performance with lower computational complexity.
2. We propose a mixed attention module (MAM) to build

the multi-residual block (MRB), which achieves competitive
results while utilizing fewer parameters. In addition, we adopt
the multi-residual learning (MRL) strategy, which is beneficial
to image reconstruction.

II. RELATED WORK

In this section, we will briefly introduce the related tech-
nologies and methods in two aspects: single image super-
resolution and attention mechanism.

A. Single image super-resolution

With the durative and rapid development of deep learning,
plenty of methods based on CNNs have been proposed for
SISR and achieved remarkable reconstruction performance.
Dong et al. [18] creatively introduced a three-layer convo-
lutional network named SRCNN, which was the preliminary
work for image SR. To further accelerate the SRCNN model,
they also designed an FSRCNN [18] framework, which up-
scaled the input at the end of the network. Afterward, Kim
et al. explored the effectiveness of the network depth for
achieving impressive performance. Based on residual learn-
ing, they designed deep SR models VDSR [4] and DRCN
[6] for powerful feature expression. Tong et al. developed
SRDenseNet [7] that employed dense connections to promote
the flow of information. Furthermore, a deep and wide network
EDSR [13] was proposed for better-recovering quality, which
optimized the SRResNet [19] by removing the redundant
modules and stacking residual blocks. Other deep CNN-based
networks, like Memnet [20] and RDN [9], focused on the
hierarchical features extracted from different receptive fields
and further increased the depth of the framework. In addition,
by fully utilizing the similarity of feature maps in spatial
and channel dimensions, NLRN [21] and RCAN [5] were
formed and outperformed other methods. Then, a very deep
feedback network (SRFBN) [22] was presented to enhance the
representative ability in computer vision tasks. Very recently,
a PSNR-oriented method, namely EBRN [11] achieved visual
and quantity improvements due to the powerful representation
brought by the residual module. Meanwhile, Liu et al. pro-
duced the RFANet [12] to solve the case that it is insufficient
to use the hierarchical features.

Even though the significant performance came from deep
layers, they have expensive costs in both the computational

resources and storage consumption. To alleviate this issue,
numerous lightweight networks were proposed to maintain
lower computation complexity for real-world applications. Hui
et al. employed a state-based recursive strategy to construct an
information distillation network (IDN) [16], which achieved
better accuracy at a moderate size. Similarly, they developed
a lightweight network with the multi-distillation named IMDN
[17], which was superior to most existing SR methods on
public benchmark datasets.

B. Attention mechanism

Attention mechanism, a weight distribution strategy, con-
centrates on the informative features and weights them ac-
cording to various computer vision tasks. In recent years,
attention mechanisms were also widely utilized in different
SISR tasks such as image recovery, object detection, and
facial recognition. For better refining the features of inner-
channel, Zhang et al. [5] proposed a residual channel atten-
tion network (RCAN) to obtain the outstanding performance
gain. Then, Hu et al. designed a compact, lightweight, and
efficient squeeze-and-extraction (SE) which weighted channels
discriminately. However, SENet [23] only explored the first-
order statistic, which hindered the network’s discriminative
ability. To this end, Dai et al. [24] designed a second-order
network (SAN) to study second-order statistics of features.
Combining the advantages of spatial attention strategies and
channel attention mechanisms, CBAM [25] inferred attention
maps from the channel and spatial dimensions. Although the
attention mechanism has made remarkable progress in SISR,
there is still room for improvement in the representation
accuracy. Inspired by RCAN [5] and CCNet [26], we proposed
a mixed attention module, which combines the two attention
mechanisms mentioned above (see Fig. 4).

III. PROPOSED METHOD

In this section, we will introduce our lightweight multi-
residual feature fusion network (MRFFN) (as shown in Fig.
1). In detail, the backbone network consists of several multi-
residual blocks (MRFBs). To fully utilize the intermediate
features at the global level, we adopt a double-residual learning
(DRL) strategy and densely stack MRFBs. As for each MRFB
(see Fig. 2), it contains multiple MRBs to achieve better
performance. Similarly, we adopt a multi-residual learning
(MRL) strategy, which can also use the hierarchical features
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Fig. 2. Schematic diagram of multi-residual fusion block (MRFB).

at the local level. In addition, inside each MRB, we take
advantage of group convolution and mixed attention module
(MAM) to refine features efficiently.

A. Network structure

MRFFN is mainly composed of three parts (as shown in Fig.
1): a low-level feature extraction module, a non-linear mapping
module, and a reconstruction module. We define the input
LR image and the SR output as ILR and ISR accordingly.
The real-world HR images trained in pairs with ILR are then
defined as IHR. In the low-level feature extraction module,
a 3 × 3 convolution (represented as Conv3) is employed to
extract the shallow features of the LR image.

FLF = HLFE(ILR), (1)

where FLF represents the output of the ILR after low-level
feature extraction, the HLFE(·) denotes the low-level feature
extraction operation. Then, the extracted shallow features are
put into multiple densely connected MRFBs and processed
step by step, then the feature FMRFBn can be extracted.

FMRFBn
= HMRFB(Conv1([F1, ..., FMRFB(n−1)

])), (2)

here, FMRFBn
represents the features extracted from the n-th

(n ≥ 2) MRFB. Accordingly, HMRFB(·) denotes the process
of each MRFB. In addition, [·] means concatenation operation,
and Conv1(·) means 1× 1 convolution. Assuming that there
are N MRFBs in the network, we can get the high-level feature
FHF after the gradual processing of these blocks.

FHF = FLF + Conv1([F1, ..., FMRFBN
]), (3)

where “+” stands for a global residual learning operation,
which can more accurately establish the connection between
low-level features and high-level features. Finally, we perform
another global residual learning operation on the extracted
high-level features FHF and the input of MRFFN to obtain
the output super-resolution image ISR.

ISR = HREC(FHF ) +HUP (FLF ), (4)

where HREC(·) and HUP (·) indicate the reconstruction part
and bilinear interpolation respectively. In the proposed frame-
work, we choose the L1 loss to train the network. For S

training samples, L1 loss function can be defined as follows:

L(θ) =
1

S

∥∥HMRFFN (IiLR)− IiHR

∥∥
1
, (5)

Here, IiLR and IiHR denotes the ith image pairs in the training
dataset. Besides, θ is the parameter set of our proposed net-
work. Then, HMRFFN (·) represents the function of MRFFN.

B. Multi-residual fusion block (MRFB).
The multi-residual fusion block (MRFB) is shown in Fig.

2. Given the input Fin, we can get the Fout of MRFB after
a series of processing. The information flows through the
proposed multi-residual block (MRB), we can naturally obtain
the extracted feature.

First, we refine the hierarchical feature from each MRB.
The following is the process of MRL strategy:

F 1
MRB = HMRB 1(Fin) + Fin,
F 2
MRB = HMRB 2(F

1
MRB) + F 1

MRB ,
F 3
MRB = HMRB 3(F

1
MRB) + F 2

MRB ,
(6)

where F i
MRB represents the features extracted by the i-th

MRB (1 ≤ i ≤ 3), and HMRB i(·) refers to the feature
extraction operation of the i-th MRB.

Second, we concatenate the residual outputs adopting the
MRL strategy of every MRB to further improve the recon-
struction ability. The extracted features we fuse in the k-th
layer can be defined as F k

concat:

F 1
concat = Conv1([Fin, F

1
MRB ]),

F k
concat = Conv1([F

(k−1)
concat, F

k
MRB ]),

(7)

where F k
MRB means the residual features extracted by k-th

(1 < k ≤ 3) MRB.
Finally, given there are K MRBs in each MRFB, FK

concat

indicates the fused features after the process of K MRBs.
After K-level (K = 3) residual feature fusion, the hierarchical
residual features are refined. Meanwhile, we can get Fout by
performing residual learning with the Fin.

Fout = FK
concat + Fin, (8)

here, FK
concat can also be denoted as F 3

concat (see Fig. 2),
which represents the output features of hierarchical residual
feature fusion.
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Fig. 3. Schematic diagram of multi-residual block (MRB).

The structure of multi-residual block (MRB) is given in Fig.
3. Given the input feature of MRB are denoted as FMRBin

. By
the process of the group convolution layers, and the utilization
of activation function to fit the non-linear mapping, we can get
the feature FGCFt

:

FGCF1
= fGCF (FMRBin

),
FGCF2

= fGCF (FGCF1
),

(9)

where FGCFt
represents the feature obtained after the t-th

group convolution layer. fGCF (·) is the operation combining
group convolution with activation function, i.e., Leaky ReLU
[36].
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Fig. 4. Schematic diagram of mixed attention module (MAM). SAM is from
[26], CAM is from [5].

Next, we define the function of the mixed attention module
as fMAM (·).

fMAM (x) = HCAM (x)⊕HSAM (x), (10)

given an input x, HCAM (·) and HSAM (·) respectively corre-
spond to the operation of the mixed attention module (MAM)
(the module can refer to Fig. 4). Here, HCAM (·) can be
defined as following:

HCAM (x) = x⊗ fsigmoid(WU (WD(HGP (x)))), (11)

here, ⊗ denotes the operation of weighting different channels
and HGP represents the global pooling operation. Meanwhile,
fsigmoid(·) stands for the sigmoid activation function. Besides,
WU (·) and WD(·) correspond to two fully-connection layers
(more details can refer to [5]).

Then, we can express the operation of SAM with the
following formula:

HSAM (x) = x ⊕HAgg(WV (x), fsoftmax(HAff (HQK(x)))),
(12)

where HAgg(·), HAff (·), and HQK(·) are a series of opera-
tions given in Fig. 4, which can also refer to [26]. In addition,
operator ⊕ indicates the element-wise addition operation and
WV (·) stands for a 1× 1 convolution. Then, fsoftmax(·) rep-
resents the softmax activation function. Moreover, the HQK(·)
can be described as follow:

HQK(x) =WQ(x)×WK(x)T, (13)

where WQ(·) and WK(·) respectively represent two different
1 × 1 convolution layers. Then, “×” denotes the matrix
multiplication.

Finally, The above feature extraction results FGCF1
, FGCF2

,
and FMAM are combined for residual learning, we can get the
output FMRBout

.

FMRBout
= FGCF1

+ FGCF2
+ FMAM + FMRBin

, (14)

where FGCF1
and FGCF2

are features that respectively ex-
tracted from the first and second group convolution layers,
while FMAM denotes the output features of MAM. Besides,
FMRBin is the input of MRB.

IV. EXPERIMENT

A. Datasets and metrics

Based on previous work [15], [27], [28], we utilize the
DIV2K [29] as the training dataset, which contains 800 high-
resolution RGB images [30]and is widely employed in recent
SISR methods. For evaluation, we adopt the most widely used
five standard benchmark datasets, namely Set5 [31], Set14
[32], B100 [33], Urban100 [34] and Manga109 [35].

We select the peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) [36] as the evaluation indexes of
image reconstruction quality, which are obtained from the
Y channel of YCbCr space. In addition, we adopt Mult-
Adds to evaluate the computational complexity of a CNN
model, which represents the number of composite multiply-
accumulate operations for the single images. As with [15], we
also assume the HR image size is 1280 × 720 to calculate
Mult-Adds. By performing bicubic interpolation on Matlab,
HR images of different scaling factors (×2, ×3 and ×4) can
be obtained.

B. Implementation details

In the network structure, Leaky ReLU [37] is employed as
the activation function followed by all of the group convolution
layers. During training, the augmented dataset consists of
images randomly flipped horizontally or vertically and 90◦

rotation. In each training batch, 16 RGB HR images are
randomly cropped and fed to our MRFFN. The size of the
LR patch images is determined by the corresponding factors.
We select the normal initialization and apply the Adam [38]
optimizer to optimizes MRFFN. For convenience, the initial
learning rate of the Adam optimizer is set to 5 × 10−4 and
decreases half for every 2 × 102 epochs. All experiments in
this article are carried out under the PyTorch framework on
NVIDIA 1080 Ti GPUs.
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TABLE I
THE EFFECT OF MULTI-RESIDUAL BLOCK (MRB) ON PERFORMANCE AND EFFECTIVENESS. EVALUATION IN PSNR AND SSIM FOR ×4 SR. SRRESNET*

IS REIMPLEMENTED RESULTS WITH DIV2K DATASET.

Methods Params Mult-Adds Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRResNet* [19] RB 1,510K 125.6G 32.03 / 0.8942 28.47 / 0.7787 27.49 / 0.7335 25.80 / 0.7770 30.09 / 0.9032
SRResNet* [19] MRB 1,047K 98.8G 32.12 / 0.8938 28.52 / 0.7792 27.52 / 0.7344 25.99 / 0.7821 30.14 / 0.9048

MRFFN RB 1,074K 61.6G 32.21 / 0.8951 28.62 / 0.7824 27.59 / 0.7362 26.11 / 0.7864 30.51 / 0.9088
MRFFN MRB 699K 40.04G 32.29 / 0.8960 28.70 / 0.7828 27.60 / 0.7366 26.29 / 0.7903 30.61 / 0.7903

TABLE II
COMPARISON OF DIFFERENT NUMBERS OF MRFBS. WE OBSERVE THE

BEST PSNR (DB) VALUES ON SET5 (×4) AND THE MULTI-ADDS OF
SCALING FACTOR ×4.

#MRFBs Params Mul-adds Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

B=2 356K 20.21G 32.01 / 0.8940 28.49 / 0.7785 27.49 / 0.7331 25.87 / 0.7776 30.11 / 0.9032
B=3 526K 29.83G 32.14 / 0.8937 28.53 / 0.7792 27.51 / 0.7339 26.03 / 0.7827 30.26 / 0.9050
B=4 699K 40.04G 32.23 / 0.8949 28.62 / 0.7807 27.57 / 0.7357 26.14 / 0.7862 30.39 / 0.9071
B=5 877K 49.76G 32.26 / 0.8955 28.61 / 0.7814 27.58 / 0.7363 26.27 / 0.7899 30.58 / 0.9088
B=6 1,059K 60.08G 32.28 / 0.8954 28.66 / 0.7820 27.59 / 0.7363 26.24 / 0.7897 30.56 / 0.9093

C. Effectiveness of Multi-residual block (MRB)

The structure of MRB is in Fig. 3, which consists of
group convolution layers, Leaky ReLU, and mixed attention
module (MAM). To verify the effectiveness of the proposed
MRBs, we launch a comparative experiment as shown in
Table I. To make a fair comparison, we complete comparative
experiments between MRBs and ordinary RBs on SRResNet.
The experimental results show that our MRBs have superiority
compared to RBs, in the case of fewer parameters. Further-
more, we conduct comparative experiments on our MRFFN,
which confirms that the MRB outperforms the RB.

In Table I, we give the results of comparative experiments
under the structures of MRFFN and SRResNet. In SRResNet,
by replacing the ordinary RBs with MRBs, a significant
improvement is achieved in PSNR on five benchmark datasets.
By replacing RB with MRB, we can achieve similar perfor-
mance while reducing the parameters by nearly 500K.

D. Ablation study

According to the ideas of the network and the main con-
tributions of this article, we conduct the following ablation
experiments: the discussion of the numbers of MRFBs, the
effectiveness of multi-residual learning (MRL) strategy, the
effectiveness of double-residual learning (DRL) strategy, and
the effectiveness of the mixed attention module (MAM). The
corresponding experimental outcomes are described below.

Discussion on the numbers of MRFBs. Based on the
previous researches, we find that deepening or widening can
improve the construction ability but will bring about the
increase of parameters. To construct a lightweight network
for SISR, we must consider the parameter firstly. To better
balancing the computation complexity and performance, we
conduct the experiment that compares the PSNR of MRFFN
with various numbers of MRFBs. According to other methods,
we ingeniously set the numbers of MRFBs to 2, 3, 4, 5, and
6.

As shown in Table II, the deepening of the network brings
the improvement of network performance. Considering the
computational consumption of the MRFFN, with the increase
of MRFB, the amounts of parameters and multi-Adds op-
erations show a positive correlation growth trend. From the
perspective of the reconstruction effect reflected by PSNR and
SSIM, the deepening of the network will bring performance
improvement (for example, the two indicators on Set5 show
a trend of gradual increase). In summary, we can conclude
that when the value of B is 4, a better balance can be
obtained between the parameters and performance. Therefore,
the numbers of MRFBs in our network is 4.

MRB MRB MRB

(a) Without multi-residual learning  (MRL) strategy

(b) With multi-residual learning  (MRL) strategy

MRB MRB MRB

Fig. 5. Explore the effectiveness of multi-residual learning (MRL) strategy. (a)
is the module without using MRL strategy, (b) is the module with employing
MRL strategy.

TABLE III
VALIDITY OF MULTI-RESIDUAL LEARNING (MRL) STRATEGY.

EVALUATION IN PSNR AND SSIM ON FIVE BENCHMARK DATASETS FOR
×4 SR.

Model Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o MRL 32.15 / 0.8942 28.57 / 0.7806 27.56 / 0.7352 26.09 / 0.7848 30.31 / 0.9059
w/ MRL 32.23 / 0.8949 28.62 / 0.7807 27.57 / 0.7357 26.14 / 0.7862 30.39 / 0.9071

Discussion on the effectiveness of multi-residual learning
strategy. As shown in Fig. 5, we can refer to the structures of
methods with or without multi-residual learning (MRL) strat-
egy. In Table III, we can find that the network which adopts the
MRL strategy will achieve better performances, compared with
the network without MRL strategy. Experiments show that the
MRL strategy can effectively enhance the reconstruction per-
formance of the network, which has a significant improvement
in PSNR and SSIM. What’s more, the introduction of the MRL
can further improve the characterization ability of the network
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and achieve a more accurate reconstruction effect.
Fig. 6 shows the comparison of the visualization results

before and after the MRL strategy is adopted. Through ob-
servation, we can find that using the MRL strategy can better
restore the detailed information of the image and maintain a
more complex spatial structure. The employ of MRL strategy
further preserves the details of the spatial relationship to
form the feature maps, which is of great help to image
reconstruction.

TABLE IV
INVESTIGATION OF THE DOUBLE-RESIDUAL LEARNING (DRL) STRATEGY.

Model Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o DRL 32.20 / 0.8946 28.59 / 0.7807 27.55 / 0.7356 26.11 / 0.7859 30.38 / 0.9070
w/ DRL 32.24 / 0.8955 28.62 / 0.7817 27.55 / 0.7358 26.16 / 0.7875 30.49 / 0.9081

Discussion on double-residual learning strategy. Our
MRFFN adopts the strategy of double-residual learning (DRL)
at the global level to strengthen the representation ability of
the network, to achieve more accurate image reconstruction.
Different from the general residual learning, DRL effectively
utilizes the shallow and deep features to jointly learn the non-
linear mapping of our network. Regarding the proof of the
validity of the DRL strategy, we can observe Table IV. In
detail, on datasets Set5, Urban100 and Manga109, the PSNR
value of each network has been increased by 0.04 dB, 0.05
dB, and 0.11 dB respectively.

Discussion on mixed attention module. The mixed at-
tention module is demonstrated in Fig. 4, which is made up
of the channel attention (CA) module and spatial attention
(SA) module. For enhancing the representation ability of the
MRFFN, we conduct a pixel-wise addition operation towards
the two attention modules. The final results are given in Table
V, which fully demonstrate the superiority of our MAM block,
compared to a separate CA module or SA module. By adopting

TABLE V
INVESTIGATION OF THE MIXED ATTENTION MODULE (MAM). CA

DENOTES CHANNEL ATTENTION MECHANISM, SA REPRESENTS SPATIAL
ATTENTION MECHANISM.

Methods Attention Set5 Set14 B100 Urban100 Manga109
CA SA PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o MAM 32.05 / 0.8929 28.51 / 0.7794 27.51 / 0.7336 25.87 / 0.7785 30.19 / 0.9045
w/ CA X 32.12 / 0.8940 28.52 / 0.7793 27.53 / 0.7339 25.94 / 0.7813 30.24 / 0.9052
w/ SA X 32.18 / 0.8946 28.59 / 0.7807 27.56 / 0.7353 26.13 / 0.7860 30.39 / 0.9067

w/ MAM X X 32.23 / 0.8949 28.62 / 0.7807 27.57 / 0.7357 26.14 / 0.7862 30.39 / 0.9071

MAM in our network, we can find that the representation
performance measured by PSNR can increase by 0.18 dB on
Set5, compared with the structure without MAM. In addition,
by comparing the network that only utilizes the CA or SA
mechanism and the one that uses a hybrid module, we can
conclude that MAM is indeed effective.

E. Comparison with the state-of-the-arts

In this section, to demonstrate our MRFFN can perform well
on five publicly available SR benchmark datasets, we conduct
extensive experiments and compare them with 11 state-of-the-
art lightweight methods. We deliberately select the following
eleven data sets for testing: SRCNN [3], FSRCNN [18], VDSR
[4], DRCN [6], LapSRN [8], DRRN [10], MemNet [20],
CARN [15], IMDN [17], IDN*1 [16], and our MRFFN. In this
experiment, we measure all methods with the PSNR and SSIM
values on five benchmark datasets, which shows the proposed
method achieves the best performance and outperforms IMDN
by a considerable margin.

As shown in Table VI, our proposed MRFFN has achieved
a comprehensive surpass in all scales (×2, ×3, or ×4). In
particular, compared with IMDN, our network uses similar
parameters with excellent performance and has completed all-
around transcendence. Let’s take the ×4 model as an example:
our network parameters are slightly less than IMDN’s, while
the PSNR is improved by nearly 0.2 dB on the Manga109.
In short, according to the results in the table, we can confirm
that MRFFN can achieve the ideal image reconstruction effect
within a reasonable range of parameters.

Visual comparisons of MRFFN with other lightweight meth-
ods on Urban100 and Manga109 datasets for ×4 are shown in
Fig. 7. To prove that our network can process different images,
we select images with different styles and characteristics
for comparison. First, we use two images on Urban100 to
verify the effectiveness of MRFFN: “Img 073” shows that
the network with the ability to recover images with square
patterns is significantly better than other methods; meanwhile,
“Img 092” confirms the reconstruction accuracy of MRFFN
for stripe pattern recovery, which outperform other networks
far beyond. Then, we select two images from Manga109
to further verify MRFFN’s superiority: “Love Hina vol14”
shows the excellent results of the network’s restoration on
curve details, and “Shimattelkouze vol26” also illustrates the
network’s powerful ability to restore texture information. In

1IDN* represents the result of retraining the IDN network on TensorFlow
with the DIV2K data set.
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Fig. 7. Visual comparisons of MRFFN with other state-of-the-art lightweight methods on Urban100 and Manga109 datasets for ×4 SR. The best results are
highlighted.

summary, our network is more dominant than other frame-
works in terms of performance and resource consumption.

V. CONCLUSIONS

In this paper, we proposed a multi-residual feature fusion
network (MRFFN) for lightweight SISR. To enhance the
reconstruction ability of the framework, we designed a multi-
residual block (MRB), which contained a mixed attention
module (MAM). Meanwhile, we proposed a multi-residual
fusion block (MRFB) to boost network performance due to
the introduction of multi-residual learning (MRL) strategy.
Furthermore, the double-residual learning (DRL) was devel-
oped to construct our MRFFN, which achieved remarkable
performance while increasing relatively few parameters. Ex-
tensive experiments demonstrated that the proposed method
was superior to the state-of-the-art on five public benchmark
datasets. In the future, we will continue leveraging the advan-
tages of attention mechanisms and residual features, which can
significantly boost the network representation ability.

ACKNOWLEDGEMENTS

The research in our paper is sponsored by the fund-
ing from Sichuan University under grant 2020SCUNG205.

REFERENCES

[1] Zhang, Lei, and Xiaolin Wu. “An Edge-Guided Image Interpolation
Algorithm via Directional Filtering and Data Fusion.” IEEE Transactions
on Image Processing, vol. 15, no. 8, 2006, pp. 2226–2238.

[2] Zhang, Kaibing, et al. “Single Image Super-Resolution With Non-Local
Means and Steering Kernel Regression.” IEEE Transactions on Image
Processing, vol. 21, no. 11, 2012, pp. 4544–4556.

[3] Dong, Chao, et al. “Learning a Deep Convolutional Network for Image
Super-Resolution.” European Conference on Computer Vision, 2014, pp.
184–199.

[4] Kim, Jiwon, et al. “Accurate Image Super-Resolution Using Very Deep
Convolutional Networks.” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 1646–1654.

[5] Zhang, Yulun, et al. “Image Super-Resolution Using Very Deep Residual
Channel Attention Networks.” Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 294–310.

[6] Kim, Jiwon, et al. “Deeply-Recursive Convolutional Network for Image
Super-Resolution.” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 1637–1645.

[7] Tong, Tong, et al. “Image Super-Resolution Using Dense Skip Connec-
tions.” 2017 IEEE International Conference on Computer Vision (ICCV),
2017, pp. 4809–4817.

[8] Lai, Wei-Sheng, et al. “Deep Laplacian Pyramid Networks for Fast and
Accurate Super-Resolution.” 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 5835–5843.

[9] Zhang, Yulun, et al. “Residual Dense Network for Image Super-
Resolution.” 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2472–2481.

[10] Tai, Ying, et al. “Image Super-Resolution via Deep Recursive Residual
Network.” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2790–2798.

[11] Qiu, Yajun, et al. “Embedded Block Residual Network: A Re-
cursive Restoration Model for Single-Image Super-Resolution.” 2019
IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 4180–4189.

[12] Liu, Jie, et al. “Residual Feature Aggregation Network for Image Super-
Resolution.” 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 2359–2368.

[13] Lim, Bee, et al. “Enhanced Deep Residual Networks for Single Image

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1517



TABLE VI
AVERAGE PSNR/SSIM FOR SCALE FACTORS ×2, ×3 AND ×4 ON SET5, SET14, B100, URBAN100, AND MANGA109. THE BEST AND THE SECOND
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